Mots-clés : trivial coefficients
@article{SIGMA_2024_20_a81,
author = {Alexander Mang},
title = {First {Cohomology} with {Trivial} {Coefficients} of {All} {Unitary} {Easy} {Quantum} {Group} {Duals}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a81/}
}
Alexander Mang. First Cohomology with Trivial Coefficients of All Unitary Easy Quantum Group Duals. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a81/
[1] Banica T., Bichon J., “Complex analogues of the half-classical geometry”, Münster J. Math., 10 (2017), 457–483, arXiv: 1703.03970 | DOI | MR | Zbl
[2] Banica T., Bichon J., “Matrix models for noncommutative algebraic manifolds”, J. Lond. Math. Soc., 95 (2017), 519–540, arXiv: 1606.01115 | DOI | MR | Zbl
[3] Banica T., Curran S., Speicher R., “Classification results for easy quantum groups”, Pacific J. Math., 247 (2010), 1–26, arXiv: 0906.3890 | DOI | MR | Zbl
[4] Banica T., Speicher R., “Liberation of orthogonal Lie groups”, Adv. Math., 222 (2009), 1461–1501, arXiv: 0808.2628 | DOI | MR | Zbl
[5] Bhowmick J., D'Andrea F., Das B., Da̧browski L., “Quantum gauge symmetries in noncommutative geometry”, J. Noncommut. Geom., 8 (2014), 433–471, arXiv: 1112.3622 | DOI | MR | Zbl
[6] Bhowmick J., D'Andrea F., Da̧browski L., “Quantum isometries of the finite noncommutative geometry of the standard model”, Comm. Math. Phys., 307 (2011), 101–131, arXiv: 1009.2850 | DOI | MR | Zbl
[7] Bichon J., Franz U., Gerhold M., “Homological properties of quantum permutation algebras”, New York J. Math., 23 (2017), 1671–1695, arXiv: 1704.00589 | MR | Zbl
[8] Cébron G., Weber M., “Quantum groups based on spatial partitions”, Ann. Fac. Sci. Toulouse Math., 32 (2023), 727–768, arXiv: 1609.02321 | DOI | MR
[9] Das B., Franz U., Kula A., Skalski A., “Lévy–Khintchine decompositions for generating functionals on algebras associated to universal compact quantum groups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21 (2018), 1850017, 36 pp., arXiv: 1711.02755 | DOI | MR | Zbl
[10] Das B., Franz U., Kula A., Skalski A., “Second cohomology groups of the Hopf$^*$-algebras associated to universal unitary quantum groups”, Ann. Inst. Fourier (Grenoble), 73 (2023), 479–509, arXiv: 2104.07933 | DOI | MR | Zbl
[11] Dijkhuizen M.S., Koornwinder T.H., “CQG algebras: a direct algebraic approach to compact quantum groups”, Lett. Math. Phys., 32 (1994), 315–330, arXiv: hep-th/9406042 | DOI | MR | Zbl
[12] Franz U., Gerhold M., Thom A., “On the Lévy–Khinchin decomposition of generating functionals”, Commun. Stoch. Anal., 9 (2015), 529–544, arXiv: 1510.03292 | DOI | MR
[13] Freslon A., “On the partition approach to Schur–Weyl duality and free quantum groups”, Transform. Groups, 22 (2017), 707–751, arXiv: 1409.1346 | DOI | MR | Zbl
[14] Ginzburg V., Calabi–Yau algebras, arXiv: math.AG/0612139
[15] Gromada D., “Classification of globally colorized categories of partitions”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21 (2018), 1850029, 25 pp., arXiv: 1805.10800 | DOI | MR | Zbl
[16] Hochschild G., “Relative homological algebra”, Trans. Amer. Math. Soc., 82 (1956), 246–269 | DOI | MR | Zbl
[17] Kustermans J., “Locally compact quantum groups in the universal setting”, Internat. J. Math., 12 (2001), 289–338, arXiv: math.OA/9902015 | DOI | MR | Zbl
[18] Kustermans J., “Locally compact quantum groups”, Quantum Independent Increment Processes, v. I, Lecture Notes in Math., 1865, Springer, Berlin, 2005, 99–180 | DOI | MR | Zbl
[19] Kustermans J., Vaes S., “Locally compact quantum groups”, Ann. Sci. École Norm. Sup., 33 (2000), 837–934 | DOI | MR | Zbl
[20] Kustermans J., Vaes S., “Locally compact quantum groups in the von Neumann algebraic setting”, Math. Scand., 92 (2003), 68–92, arXiv: math.OA/0005219 | DOI | MR | Zbl
[21] Kyed D., L2-invariants for quantum groups, Ph.D. Thesis, University of Copenhagen, 2008 https://www.imada.sdu.dk/u/dkyed/PhD-thesis-final-hyperref.pdf
[22] Kyed D., Raum S., “On the $\ell^2$-Betti numbers of universal quantum groups”, Math. Ann., 369 (2017), 957–975, arXiv: 1610.05474 | DOI | MR | Zbl
[23] Maaßen L., Representation categories of compact matrix quantum groups, Ph.D. Thesis, RWTH Aachen University, 2021 | DOI
[24] Mančinska L., Roberson D.E., “Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs”, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (Los Alamitos, CA, 2020), IEEE Computer Soc., 661–672, arXiv: 1910.06958 | DOI | MR
[25] Mang A., Classification and homological invariants of compact quantum groups of combinatorial type, Ph.D. Thesis, Universität des Saarlandes, 2022 | DOI
[26] Mang A., Weber M., “Categories of two-colored pair partitions part I: categories indexed by cyclic groups”, Ramanujan J., 53 (2020), 181–208, arXiv: 1809.06948 | DOI | MR | Zbl
[27] Mang A., Weber M., “Categories of two-colored pair partitions Part II: Categories indexed by semigroups”, J. Combin. Theory Ser. A, 180 (2021), 105409, 43 pp., arXiv: 1901.03266 | DOI | MR | Zbl
[28] Mang A., Weber M., “Non-hyperoctahedral categories of two-colored partitions part I: new categories”, J. Algebraic Combin., 54 (2021), 475–513, arXiv: 1907.11417 | DOI | MR
[29] Mang A., Weber M., “Non-hyperoctahedral categories of two-colored partitions Part II: All possible parameter values”, Appl. Categ. Structures, 29 (2021), 951–982, arXiv: 2003.00569 | DOI | MR | Zbl
[30] Raum S., Weber M., “The combinatorics of an algebraic class of easy quantum groups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014), 1450016, 17 pp., arXiv: 1312.1497 | DOI | MR | Zbl
[31] Raum S., Weber M., “Easy quantum groups and quantum subgroups of a semi-direct product quantum group”, J. Noncommut. Geom., 9 (2015), 1261–1293, arXiv: 1311.7630 | DOI | MR | Zbl
[32] Raum S., Weber M., “The full classification of orthogonal easy quantum groups”, Comm. Math. Phys., 341 (2016), 751–779, arXiv: 1312.3857 | DOI | MR | Zbl
[33] Tarrago P., Weber M., “Unitary easy quantum groups: the free case and the group case”, Int. Math. Res. Not., 2017 (2017), 5710–5750, arXiv: 1512.00195 | DOI | MR | Zbl
[34] Tarrago P., Weber M., “The classification of tensor categories of two-colored noncrossing partitions”, J. Combin. Theory Ser. A, 154 (2018), 464–506 | DOI | MR | Zbl
[35] Van Daele A., “Discrete quantum groups”, J. Algebra, 180 (1996), 431–444 | DOI | MR | Zbl
[36] Van Daele A., “An algebraic framework for group duality”, Adv. Math., 140 (1998), 323–366 | DOI | MR | Zbl
[37] Van Daele A., Wang S., “Universal quantum groups”, Internat. J. Math., 7 (1996), 255–263 | DOI | MR | Zbl
[38] Wang S., “Free products of compact quantum groups”, Comm. Math. Phys., 167 (1995), 671–692 | DOI | MR | Zbl
[39] Weber M., “On the classification of easy quantum groups”, Adv. Math., 245 (2013), 500–533, arXiv: 1201.4723 | DOI | MR | Zbl
[40] Wendel A., Hochschild cohomology of free easy quantum groups, Bachelor's Thesis, Saarland University, 2020
[41] Woronowicz S.L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl
[42] Woronowicz S.L., “Tannaka–Krein duality for compact matrix pseudogroups. Twisted ${\rm SU}(N)$ groups”, Invent. Math., 93 (1988), 35–76 | DOI | MR | Zbl
[43] Woronowicz S.L., “A remark on compact matrix quantum groups”, Lett. Math. Phys., 21 (1991), 35–39 | DOI | MR | Zbl
[44] Woronowicz S.L., “Compact quantum groups”, Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl