@article{SIGMA_2024_20_a80,
author = {Xin Hu and Matteo Casati},
title = {Multidimensional {Nonhomogeneous} {Quasi-Linear} {Systems} and {Their} {Hamiltonian} {Structure}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a80/}
}
TY - JOUR AU - Xin Hu AU - Matteo Casati TI - Multidimensional Nonhomogeneous Quasi-Linear Systems and Their Hamiltonian Structure JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a80/ LA - en ID - SIGMA_2024_20_a80 ER -
Xin Hu; Matteo Casati. Multidimensional Nonhomogeneous Quasi-Linear Systems and Their Hamiltonian Structure. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a80/
[1] Ablowitz M.J., Haberman R., “Nonlinear evolution equations – two and three dimensions”, Phys. Rev. Lett., 35 (1975), 1185–1188 | DOI | MR
[2] Barakat A., De Sole A., Kac V.G., “Poisson vertex algebras in the theory of Hamiltonian equations”, Jpn. J. Math., 4 (2009), 141–252, arXiv: 0907.1275 | DOI | MR | Zbl
[3] Carlet G., Casati M., Shadrin S., “Poisson cohomology of scalar multidimensional Dubrovin–Novikov brackets”, J. Geom. Phys., 114 (2017), 404–419, arXiv: 1512.05744 | DOI | MR | Zbl
[4] Carlet G., Casati M., Shadrin S., “Normal forms of dispersive scalar Poisson brackets with two independent variables”, Lett. Math. Phys., 108 (2018), 2229–2253, arXiv: 1707.03703 | DOI | MR | Zbl
[5] Carlet G., Posthuma H., Shadrin S., “Bihamiltonian cohomology of KdV brackets”, Comm. Math. Phys., 341 (2016), 805–819, arXiv: 1406.5595 | DOI | MR | Zbl
[6] Casati M., “On deformations of multidimensional Poisson brackets of hydrodynamic type”, Comm. Math. Phys., 335 (2015), 851–894, arXiv: 1312.1878 | DOI | MR | Zbl
[7] Conn J.F., “Normal forms for smooth Poisson structures”, Ann. of Math., 121 (1985), 565–593 | DOI | MR | Zbl
[8] Dubrovin B.A., Krichever I.M., Novikov S.P., “Integrable systems. I”, Dynamical Systems, IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 2001, 177–332 | DOI | MR
[9] Dubrovin B.A., Novikov S.P., “Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov–Whitham averaging method”, Dokl. Akad. Nauk SSSR, 270 (1983), 781–785 | MR | Zbl
[10] Dubrovin B.A., Zhang Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, arXiv: math.DG/0108160
[11] Ferapontov E.V., Odesskii A.V., Stoilov N.M.,, “Classification of integrable two-component Hamiltonian systems of hydrodynamic type in $2+1$ dimensions”, J. Math. Phys., 52 (2011), 073505, 28 pp., arXiv: 1007.3782 | DOI | MR | Zbl
[12] Getzler E., “A Darboux theorem for Hamiltonian operators in the formal calculus of variations”, Duke Math. J., 111 (2002), 535–560, arXiv: math/0002164 | DOI | MR | Zbl
[13] Ginzburg V.L., Weinstein A., “Lie–Poisson structure on some Poisson Lie groups”, J. Amer. Math. Soc., 5 (1992), 445–453 | DOI | MR | Zbl
[14] Kersten P., Krasil'shchik I., Verbovetsky A., “Hamiltonian operators and $l^*$-coverings”, J. Geom. Phys., 50 (2004), 273–302, arXiv: math/0304245 | DOI | MR | Zbl
[15] Krasil'shchik I.S., Vinogradov A.M., “Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations: Symmetries of partial differential equations, Part I”, Acta Appl. Math., 15 (1989), 161–209 | DOI | MR | Zbl
[16] Lichnerowicz A., “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Differential Geometry, 12 (1977), 253–300 | DOI | MR | Zbl
[17] Liu S.-Q., Zhang Y., “Deformations of semisimple bihamiltonian structures of hydrodynamic type”, J. Geom. Phys., 54 (2005), 427–453, arXiv: math.DG/0405146 | DOI | MR | Zbl
[18] Mokhov O.I., “Poisson brackets of Dubrovin–Novikov type (DN-brackets)”, Funct. Anal. Appl., 22 (1988), 336–338 | DOI | MR | Zbl
[19] Mokhov O.I., “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53 (1998), 515–622 | DOI | MR | Zbl
[20] Mokhov O.I., “The classification of nonsingular multidimensional Dubrovin–Novikov brackets”, Funct. Anal. Appl., 42 (2008), 33–44, arXiv: math.DG/0611785 | DOI | MR | Zbl
[21] Mokhov O.I., Ferapontov E.V., “Hamiltonian pairs generated by skew-symmetric Killing tensors on spaces of constant curvature”, Funct. Anal. Appl., 28 (1994), 123–125 | DOI | MR | Zbl
[22] Olver P.J., “On the Hamiltonian structure of evolution equations”, Math. Proc. Cambridge Philos. Soc., 88 (1980), 71–88 | DOI | MR | Zbl
[23] Olver P.J., Applications of Lie groups to differential equations, Grad. Texts Math., 107, 2nd ed., Springer, New York, 1993 | DOI | MR | Zbl
[24] Tsarëv S.P., “The Hamilton property of stationary and inverted equations in continuum mechanics and mathematical physics”, Math. Notes, 46 (1989), 569–573 | DOI | MR | Zbl
[25] Vergallo P., “Quasilinear systems of first order PDEs with nonlocal Hamiltonian structures”, Math. Phys. Anal. Geom., 25 (2022), 26, 19 pp., arXiv: 2203.13554 | DOI | MR | Zbl
[26] Vergallo P., “Non-homogeneous Hamiltonian structures for quasilinear systems”, Boll. Unione Mat. Ital., 17 (2024), 513–526, arXiv: 2301.10713 | DOI | MR
[27] Vergallo P., Vitolo R., “Homogeneous Hamiltonian operators and the theory of coverings”, Differential Geom. Appl., 75 (2021), 101713, 16 pp., arXiv: 2007.15294 | DOI | MR
[28] Weinstein A., “The local structure of Poisson manifolds”, J. Differential Geom., 18 (1983), 523–557 | DOI | MR | Zbl