Mots-clés : ball volume
@article{SIGMA_2024_20_a8,
author = {Moreno Andreatta and Corentin Guichaoua and Nicolas Juillet},
title = {Taking {Music} {Seriously:} on the {Dynamics} of {`Mathemusical'} {Research} with a {Focus} on {Hexachordal} {Theorems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a8/}
}
TY - JOUR AU - Moreno Andreatta AU - Corentin Guichaoua AU - Nicolas Juillet TI - Taking Music Seriously: on the Dynamics of `Mathemusical' Research with a Focus on Hexachordal Theorems JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a8/ LA - en ID - SIGMA_2024_20_a8 ER -
%0 Journal Article %A Moreno Andreatta %A Corentin Guichaoua %A Nicolas Juillet %T Taking Music Seriously: on the Dynamics of `Mathemusical' Research with a Focus on Hexachordal Theorems %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a8/ %G en %F SIGMA_2024_20_a8
Moreno Andreatta; Corentin Guichaoua; Nicolas Juillet. Taking Music Seriously: on the Dynamics of `Mathemusical' Research with a Focus on Hexachordal Theorems. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a8/
[1] Althuis T.A., Göbel F., Graph theoretic aspects of music theory, Memorandum No 1573, University of Twente, 2001 https://research.utwente.nl/files/5115800/1573.pdf
[2] Amiot E., “Une preuve élégante du théorème de Babbitt par transformée de Fourier discrète”, Quadrature, 61 (2006), 1–4
[3] Amiot E., “David Lewin and maximally even sets”, J. Math. Music, 1 (2007), 157–172 | DOI | MR | Zbl
[4] Amiot E., “New perspectives on rhythmic canons and the spectral conjecture”, J. Math. Music, 3 (2009), 71–84 | DOI | MR | Zbl
[5] Amiot E., Music through Fourier space: Discrete Fourier transform in music theory, Comput. Music Sci., Springer, Cham, 2016 | DOI | MR | Zbl
[6] Amiot E., Rahn J. (eds.), “Tiling rhythmic canons”, Perspect. New Music, 49 (2011), 6–273 https://muse.jhu.edu/issue/43618
[7] Andreatta M., Méthodes algébriques en musique et musicologie du XXe siècle: aspects théoriques, analytiques et compositionnels, EHESS-IRCAM, Paris, 2003
[8] Andreatta M., “Une introduction musicologique à la recherche mathémusicale”, Circuit, 24 (2014), 51–66 | DOI
[9] Andreatta M., Tiling canons as a key to approach open mathematical conjectures?, Mathemusical Conversations, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 32, Wiley, 2015, 86–104 | DOI
[10] Andreatta M., Agon C. (eds.), “Special issue: Tiling problems in music”, J. Math. Music, 3 (2009), 63–70 | DOI | MR
[11] Andreatta M., Bardez J.-M., Rahn J. (eds), Around set theory. A French/American musicological meeting, Delatour France, Sampzon, 2008
[12] Andreatta M., Baroin G., “An introduction on formal and computational models in popular music analysis and generation”, Aesthetics and Neuroscience: Scientific and Artistic Perspectives, Springer, Cham, 2016, 257–269 | DOI
[13] Andreatta M., Guichaoua C., Juillet N., “New hexachordal theorems in metric spaces with probability measure”, Rend. Semin. Mat. Univ. Padova (to appear) | MR
[14] Andreatta M., Vuza D.T., “On some properties of periodic sequences in Anatol Vieru's modal theory”, Tatra Mt. Math. Publ., 23 (2001), 1–15 | MR | Zbl
[15] Assayag G., Feichtinger H.G., Rodrigues J.F. (eds.), Mathematics and music: A Diderot mathematical forum, Springer, Berlin, 2002 | DOI | MR | Zbl
[16] Babbitt M., “Some aspects of twelve-tone composition”, The Score, 12 (1955), 53–61
[17] Ballinger B., Benbernou N., Gomez F., O'Rourke J., Toussaint G., “The continuous hexachordal theorem, in Mathematics and Computation in Music”, Commun. Comput. Inf. Sci., 38, eds. E. Chew, A. Childs, C.H. Chuan, Springer, New Haven, 2009, 11–21 | DOI | Zbl
[18] Blau S.K., “The hexachordal theorem: a mathematical look at interval relations in twelve-tone composition”, Math. Mag., 72 (1999), 310–313 | DOI | MR | Zbl
[19] Boulez P., Connes A., “Creativity in music and mathematics”, A meeting organized within the Mathematics and Computation in Music Conference at IRCAM (15 June 2011) http://agora2011.ircam.fr
[20] Buerger M.J., “Proofs and generalizations of Patterson's theorems on homometric complementary sets”, Z. Kristallographie, 143 (1976), 79–98 | DOI
[21] Coven E.M., Meyerowitz A., “Tiling the integers with translates of one finite set”, J. Algebra, 212 (1999), 161–174, arXiv: math/9802122 | DOI | MR | Zbl
[22] de Bruijn N.G., “On bases for the set of integers”, Publ. Math. Debrecen, 1 (1950), 232–242 | DOI | MR | Zbl
[23] Fauvel J., Flood R., Wilson R. (eds.), Music and mathematics: From Pythagoras to fractals, Oxford University Press, Oxford, 2006 | MR
[24] Forte A., The structure of atonal music, Yale University Press, 1973
[25] Fox R.H., “Solution by R.H. Fox”, Canad. Math. Bull., 7 (1964), 623–626
[26] Freund A., Andreatta M., Giavitto J.-L., “Lattice-based and topological representations of binary relations with an application to music”, Ann. Math. Artif. Intell., 73 (2015), 311–334 | DOI | MR | Zbl
[27] Fuglede B., “Commuting self-adjoint partial differential operators and a group theoretic problem”, J. Funct. Anal., 16 (1974), 101–121 | DOI | MR | Zbl
[28] Ghisi D., Vettori intervallari: Non degenerazione e Z-relation, Masters Thesis, University of Milano Bicocca, Italy, 2006
[29] Goyette J., The Z-relation in theory and practice, Ph.D. Thesis, University of Rochester, 2012
[30] Hajós G., “Sur la factorisation des groupes abéliens”, Časopis Pěst. Mat., 74 (1949), 157–162 | MR
[31] Jedrzejewski F., Andreatta M., Johnson T., “Musical experiences with block designs”, Mathematics and Computation in Music, Commun. Comput. Inf. Sci., 38, Springer, New Haven, 2009, 154–165 | DOI
[32] Jedrzejewski F., Johnson T., “The structure of Z-related sets”, Mathematics and Computation in Music, Lecture Notes in Comput. Sci., 7937, Springer, Heidelberg, 2013, 128–137, arXiv: 1304.6608 | DOI | MR | Zbl
[33] Kolountzakis M.N., Matolcsi M., “Tessellations by translation”, Gac. R. Soc. Mat. Esp., 13 (2010), 725–746 | MR
[34] Kowalski O., Preiss D., “Besicovitch-type properties of measures and submanifolds”, J. Reine Angew. Math., 379 (1987), 115–151 | DOI | MR | Zbl
[35] Lanzarotto G., Extended vuza canons, Ph.D. Thesis, University of Padova, Université de Strasbourg, 2022 | MR
[36] Lascabettes P., Agon C., Andreatta M., Bloch I., “Computational analysis of musical structures based on morphological filters”, Mathematics and Computation in Music, Lecture Notes in Comput. Sci., 13267, Springer, Cham, 2022, 267–278 | DOI | MR | Zbl
[37] Lev N., Matolcsi M., “The Fuglede conjecture for convex domains is true in all dimensions”, Acta Math., 228 (2022), 385–420, arXiv: 1904.12262 | DOI | MR | Zbl
[38] Lewin D., “Re: Intervalic relations between two collections of notes”, J. Music Theory, 3 (1959), 298–301 | DOI
[39] Lewin D., Generalized musical intervals and transformations, 2nd ed., Oxford University Press, Oxford, 2007 | DOI
[40] Mandereau J., Ghisi D., Amiot E., Andreatta M., Agon C., “Discrete phase retrieval in musical structures”, J. Math. Music, 5 (2011), 99–116 | DOI | MR | Zbl
[41] Mandereau J., Ghisi D., Amiot E., Andreatta M., Agon C., “$Z$-relation and homometry in musical distributions”, J. Math. Music, 5 (2011), 83–98 | DOI | MR | Zbl
[42] McCartin B.J., “Geometric proofs of the complementary chords theorems”, Int. Math. Forum, 11 (2016), 27–39 | DOI
[43] Meredith D. (ed.), Computational music analysis, Springer, Cham, 2016 | DOI | MR | Zbl
[44] Patterson L., “Homometric structures”, Nature, 143 (1939), 939–940 | DOI
[45] Patterson L., “Ambiguities in the X-ray analysis of crystal structures”, Phys. Rev., 65 (1944), 195–201 | DOI
[46] Peeters G., Roadmap for music information research, unpublished, 2013
[47] Popoff A., Andreatta M., Ehresmann A., “Relational poly-Klumpenhouwer networks for transformational and voice-leading analysis”, J. Math. Music, 12 (2018), 35–55 | DOI | MR | Zbl
[48] Rosenblatt J., Seymour P.D., “The structure of homometric sets”, SIAM J. Algebraic Discrete Methods, 3 (1982), 343–350 | DOI | MR | Zbl
[49] Tao T., “Fuglede's conjecture is false in 5 and higher dimensions”, Math. Res. Lett., 11 (2004), 251–258, arXiv: math.CO/0306134 | DOI | MR | Zbl
[50] Tymoczko D., A geometry of music, Oxf. Stud. Music Theory, Oxford University Press, Oxford, 2011 | MR
[51] Wang M., Homologie persistante appliquée à l'analyse automatique des styles musicaux, Ph.D. Thesis, Université de Bordeaux et Université de Strasbourg, 2023
[52] Wilcox H.J., “Group tables and the generalized hexachord theorem”, Perspect. New Music, 21 (1983), 535–539 | DOI