On $F$-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show the polynomial property of $F$-polynomials for generalized quantum cluster algebras and obtain the associated separation formulas under a mild condition. Along the way, we obtain Gupta's formulas of $F$-polynomials for generalized quantum cluster algebras. These formulas specialize to Gupta's formulas for quantum cluster algebras and cluster algebras respectively. Finally, a generalization of Gupta's formula has also been discussed in the setting of generalized cluster algebras.
Keywords: separation formula, Fock–Goncharov decomposition, generalized quantum cluster algebra, generalized cluster algebra.
Mots-clés : $F$-polynomial
@article{SIGMA_2024_20_a79,
     author = {Changjian Fu and Liangang Peng and Huihui Ye},
     title = {On $F${-Polynomials} for {Generalized} {Quantum} {Cluster} {Algebras} and {Gupta's} {Formula}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a79/}
}
TY  - JOUR
AU  - Changjian Fu
AU  - Liangang Peng
AU  - Huihui Ye
TI  - On $F$-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a79/
LA  - en
ID  - SIGMA_2024_20_a79
ER  - 
%0 Journal Article
%A Changjian Fu
%A Liangang Peng
%A Huihui Ye
%T On $F$-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a79/
%G en
%F SIGMA_2024_20_a79
Changjian Fu; Liangang Peng; Huihui Ye. On $F$-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a79/

[1] Bai L., Chen X., Ding M., Xu F., “A quantum analog of generalized cluster algebras”, Algebr. Represent. Theory, 21 (2018), 1203–1217, arXiv: 1610.09803 | DOI | MR | Zbl

[2] Bai L., Chen X., Ding M., Xu F., “Generalized quantum cluster algebras: the Laurent phenomenon and upper bounds”, J. Algebra, 619 (2023), 298–322, arXiv: 2203.06928 | DOI | MR | Zbl

[3] Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv. Math., 195 (2005), 405–455, arXiv: math.QA/0404446 | DOI | MR | Zbl

[4] Chekhov L., Shapiro M., “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not., 2014 (2014), 2746–2772, arXiv: 1111.3963 | DOI | MR | Zbl

[5] Davison B., “Positivity for quantum cluster algebras”, Ann. of Math., 187 (2018), 157–219, arXiv: 1601.07918 | DOI | MR | Zbl

[6] Fock V.V., Goncharov A.B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér., 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl

[7] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl

[8] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl

[9] Gleitz A.-S., “Generalised cluster algebras and $q$-characters at roots of unity”, Proceedings of FPSAC 2015, Discrete Math. Theor. Comput. Sci. Proc. (Nancy, 2015), Discrete Mathematics Theoretical Computer Science (DMTCS), 357–368 | DOI | MR | Zbl

[10] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl

[11] Gupta M., A formula for $F$-polynomials in terms of $c$-vectors and stabilization of $F$-polynomials, arXiv: 1812.01910

[12] Iwaki K., Nakanishi T., “Exact WKB analysis and cluster algebras II: Simple poles, orbifold points, and generalized cluster algebras”, Int. Math. Res. Not., 2016 (2016), 4375–4417, arXiv: 1409.4641 | DOI | MR | Zbl

[13] Keller B., “Cluster algebras and derived categories”, Derived Categories in Algebraic Geometry, EMS Ser. Congr. Rep., European Mathematical Society (EMS), Zürich, 2013, 123–183, arXiv: 1202.4161 | DOI | MR

[14] Keller B., Demonet L., “A survey on maximal green sequences”, Representation Theory and Beyond, Contemp. Math., 758, American Mathematical Society, Providence, RI, 2020, 267–286, arXiv: 1904.09247 | DOI | MR | Zbl

[15] Labardini-Fragoso D., Mou L., “Gentle algebras arising from surfaces with orbifold points of order 3, Part I: scattering diagrams”, Algebr. Represent. Theory, 27 (2024), 679–722, arXiv: 2203.11563 | DOI | MR

[16] Labardini-Fragoso D., Velasco D., “On a family of Caldero–Chapoton algebras that have the Laurent phenomenon”, J. Algebra, 520 (2019), 90–135, arXiv: 1704.07921 | DOI | MR | Zbl

[17] Lin F., Musiker G., Nakanishi T., “Two formulas for $F$-polynomials”, Int. Math. Res. Not., 2024 (2024), 613–634, arXiv: 2112.11839 | DOI | MR

[18] Nakanishi T., “Quantum generalized cluster algebras and quantum dilogarithms of higher degrees”, Theoret. and Math. Phys., 185 (2015), 1759–1768, arXiv: 1410.0584 | DOI | MR | Zbl

[19] Nakanishi T., “Structure of seeds in generalized cluster algebras”, Pacific J. Math., 277 (2015), 201–217, arXiv: 1409.5967 | DOI | MR

[20] Nakanishi T., Cluster algebras and scattering diagrams, MSJ Memoirs, 41, Mathematical Society of Japan, Tokyo, 2023, arXiv: 2201.11371 | DOI | MR

[21] Tran T., “$F$-polynomials in quantum cluster algebras”, Algebr. Represent. Theory, 14 (2011), 1025–1061, arXiv: 0904.3291 | DOI | MR | Zbl