Mots-clés : $F$-polynomial
@article{SIGMA_2024_20_a79,
author = {Changjian Fu and Liangang Peng and Huihui Ye},
title = {On $F${-Polynomials} for {Generalized} {Quantum} {Cluster} {Algebras} and {Gupta's} {Formula}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a79/}
}
TY - JOUR AU - Changjian Fu AU - Liangang Peng AU - Huihui Ye TI - On $F$-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a79/ LA - en ID - SIGMA_2024_20_a79 ER -
%0 Journal Article %A Changjian Fu %A Liangang Peng %A Huihui Ye %T On $F$-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a79/ %G en %F SIGMA_2024_20_a79
Changjian Fu; Liangang Peng; Huihui Ye. On $F$-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a79/
[1] Bai L., Chen X., Ding M., Xu F., “A quantum analog of generalized cluster algebras”, Algebr. Represent. Theory, 21 (2018), 1203–1217, arXiv: 1610.09803 | DOI | MR | Zbl
[2] Bai L., Chen X., Ding M., Xu F., “Generalized quantum cluster algebras: the Laurent phenomenon and upper bounds”, J. Algebra, 619 (2023), 298–322, arXiv: 2203.06928 | DOI | MR | Zbl
[3] Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv. Math., 195 (2005), 405–455, arXiv: math.QA/0404446 | DOI | MR | Zbl
[4] Chekhov L., Shapiro M., “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not., 2014 (2014), 2746–2772, arXiv: 1111.3963 | DOI | MR | Zbl
[5] Davison B., “Positivity for quantum cluster algebras”, Ann. of Math., 187 (2018), 157–219, arXiv: 1601.07918 | DOI | MR | Zbl
[6] Fock V.V., Goncharov A.B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér., 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl
[7] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[8] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl
[9] Gleitz A.-S., “Generalised cluster algebras and $q$-characters at roots of unity”, Proceedings of FPSAC 2015, Discrete Math. Theor. Comput. Sci. Proc. (Nancy, 2015), Discrete Mathematics Theoretical Computer Science (DMTCS), 357–368 | DOI | MR | Zbl
[10] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl
[11] Gupta M., A formula for $F$-polynomials in terms of $c$-vectors and stabilization of $F$-polynomials, arXiv: 1812.01910
[12] Iwaki K., Nakanishi T., “Exact WKB analysis and cluster algebras II: Simple poles, orbifold points, and generalized cluster algebras”, Int. Math. Res. Not., 2016 (2016), 4375–4417, arXiv: 1409.4641 | DOI | MR | Zbl
[13] Keller B., “Cluster algebras and derived categories”, Derived Categories in Algebraic Geometry, EMS Ser. Congr. Rep., European Mathematical Society (EMS), Zürich, 2013, 123–183, arXiv: 1202.4161 | DOI | MR
[14] Keller B., Demonet L., “A survey on maximal green sequences”, Representation Theory and Beyond, Contemp. Math., 758, American Mathematical Society, Providence, RI, 2020, 267–286, arXiv: 1904.09247 | DOI | MR | Zbl
[15] Labardini-Fragoso D., Mou L., “Gentle algebras arising from surfaces with orbifold points of order 3, Part I: scattering diagrams”, Algebr. Represent. Theory, 27 (2024), 679–722, arXiv: 2203.11563 | DOI | MR
[16] Labardini-Fragoso D., Velasco D., “On a family of Caldero–Chapoton algebras that have the Laurent phenomenon”, J. Algebra, 520 (2019), 90–135, arXiv: 1704.07921 | DOI | MR | Zbl
[17] Lin F., Musiker G., Nakanishi T., “Two formulas for $F$-polynomials”, Int. Math. Res. Not., 2024 (2024), 613–634, arXiv: 2112.11839 | DOI | MR
[18] Nakanishi T., “Quantum generalized cluster algebras and quantum dilogarithms of higher degrees”, Theoret. and Math. Phys., 185 (2015), 1759–1768, arXiv: 1410.0584 | DOI | MR | Zbl
[19] Nakanishi T., “Structure of seeds in generalized cluster algebras”, Pacific J. Math., 277 (2015), 201–217, arXiv: 1409.5967 | DOI | MR
[20] Nakanishi T., Cluster algebras and scattering diagrams, MSJ Memoirs, 41, Mathematical Society of Japan, Tokyo, 2023, arXiv: 2201.11371 | DOI | MR
[21] Tran T., “$F$-polynomials in quantum cluster algebras”, Algebr. Represent. Theory, 14 (2011), 1025–1061, arXiv: 0904.3291 | DOI | MR | Zbl