@article{SIGMA_2024_20_a78,
author = {John M. Campbell and M. Lawrence Glasser and Yajun Zhou},
title = {New {Evaluations} of {Inverse} {Binomial} {Series} via {Cyclotomic} {Multiple} {Zeta} {Values}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a78/}
}
TY - JOUR AU - John M. Campbell AU - M. Lawrence Glasser AU - Yajun Zhou TI - New Evaluations of Inverse Binomial Series via Cyclotomic Multiple Zeta Values JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a78/ LA - en ID - SIGMA_2024_20_a78 ER -
%0 Journal Article %A John M. Campbell %A M. Lawrence Glasser %A Yajun Zhou %T New Evaluations of Inverse Binomial Series via Cyclotomic Multiple Zeta Values %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a78/ %G en %F SIGMA_2024_20_a78
John M. Campbell; M. Lawrence Glasser; Yajun Zhou. New Evaluations of Inverse Binomial Series via Cyclotomic Multiple Zeta Values. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a78/
[1] Ablinger J., “Discovering and proving infinite binomial sums identities”, Exp. Math., 26 (2017), 62–71, arXiv: 1507.01703 | DOI | MR | Zbl
[2] Ablinger J., Blümlein J., Raab C.G., Schneider C., “Iterated binomial sums and their associated iterated integrals”, J. Math. Phys., 55 (2014), 112301, 57 pp., arXiv: 1407.1822 | DOI | MR | Zbl
[3] Au K.C., Iterated integrals and multiple polylogarithm at algebraic arguments, arXiv: 2201.01676
[4] Blümlein J., “Algebraic relations between harmonic sums and associated quantities”, Comput. Phys. Comm., 159 (2004), 19–54, arXiv: hep-ph/0311046 | DOI | MR | Zbl
[5] Borwein J., Bailey D., Girgensohn R., Experimentation in mathematics. Computational paths to discovery, A K Peters, Ltd., Natick, MA, 2004 | DOI | MR | Zbl
[6] Borwein J.M., Bradley D.M., Broadhurst D.J., Lisoněk P., “Special values of multiple polylogarithms”, Trans. Amer. Math. Soc., 353 (2001), 907–941, arXiv: math.CA/9910045 | DOI | MR | Zbl
[7] Borwein J.M., Broadhurst D.J., Kamnitzer J., “Central binomial sums, multiple Clausen values, and zeta values”, Experiment. Math., 10 (2001), 25–34, arXiv: hep-th/0004153 | DOI | MR | Zbl
[8] Brown F., On the periods of some Feynman integrals, arXiv: 0910.0114
[9] Brown F., “The massless higher-loop two-point function”, Comm. Math. Phys., 287 (2009), 925–958, arXiv: 0804.1660 | DOI | MR | Zbl
[10] Brown F., “Multiple zeta values and periods of moduli spaces $\overline{\mathfrak M}_{0,n}$”, Ann. Sci. Éc. Norm. Supér., 42 (2009), 371–489, arXiv: math.AG/0606419 | DOI | MR | Zbl
[11] Campbell J.M., Chen K.-W., “Explicit identities for infinite families of series involving squared binomial coefficients”, J. Math. Anal. Appl., 513 (2022), 126219, 23 pp. | DOI | MR | Zbl
[12] Campbell J.M., Levrie P., “Proof of a conjecture due to Chu on Gosper-type sums”, Aequationes Math., 98 (2024), 1071–1079 | DOI | MR
[13] Campbell J.M., Levrie P., Xu C., Zhao J., “On a problem involving the squares of odd harmonic numbers”, Ramanujan J., 63 (2024), 387–408, arXiv: 2206.05026 | DOI | MR | Zbl
[14] Chen H., Excursions in classical analysis. Pathways to advanced problem solving and undergraduate research, Classr. Res. Mater. Ser., Mathematical Association of America, Washington, DC, 2010 | DOI | MR | Zbl
[15] Chu W., “Further Apéry-like series for Riemann zeta function”, Math. Notes, 109 (2021), 136–146 | DOI | MR | Zbl
[16] Chudnovsky D.V., Chudnovsky G.V., “Classification of hypergeometric identities for $\pi$ and other logarithms of algebraic numbers”, Proc. Natl. Acad. Sci. USA, 95 (1998), 2744–2749 | DOI | MR | Zbl
[17] Davydychev A.I., Kalmykov M.Yu., “New results for the $\epsilon$-expansion of certain one-, two- and three-loop Feynman diagrams”, Nuclear Phys. B, 605 (2001), 266–318, arXiv: hep-th/0012189 | DOI | MR | Zbl
[18] Davydychev A.I., Kalmykov M.Yu., “Massive Feynman diagrams and inverse binomial sums”, Nuclear Phys. B, 699 (2004), 3–64, arXiv: hep-th/0303162 | DOI | MR | Zbl
[19] Duhr C., Dulat F., “PolyLogTools – polylogs for the masses”, J. High Energy Phys., 2019:8 (2019), 135, 56 pp., arXiv: 1904.07279 | DOI | MR
[20] Dyson F.J., Frankel N.E., Glasser M.L., “Lehmer's interesting series”, Amer. Math. Monthly, 120 (2013), 116–130, arXiv: 1009.4274 | DOI | MR | Zbl
[21] Glasser M.L., “A generalized Apéry series”, J. Integer Seq., 15 (2012), 12.4.3, 7 pp., arXiv: 1204.1078 | MR | Zbl
[22] Goncharov A.B., “Multiple polylogarithms, cyclotomy and modular complexes”, Math. Res. Lett., 5 (1998), 497–516, arXiv: 1105.2076 | DOI | MR | Zbl
[23] Hoffman M.E., “Quasi-shuffle products”, J. Algebraic Combin., 11 (2000), 49–68, arXiv: math.QA/9907173 | DOI | MR | Zbl
[24] Kalmykov M.Yu., Veretin O., “Single-scale diagrams and multiple binomial sums”, Phys. Lett. B, 483 (2000), 315–323, arXiv: hep-th/0004010 | DOI | MR | Zbl
[25] Kalmykov M.Yu., Ward B.F.L., Yost S.A., “On the all-order $\epsilon$-expansion of generalized hypergeometric functions with integer values of parameters”, J. High Energy Phys., 2007:11 (2007), 009, 13 pp., arXiv: 0708.0803 | DOI | MR | Zbl
[26] Kummer E.E., “Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen”, J. Reine Angew. Math., 21 (1840), 74–90 | DOI | MR
[27] Kummer E.E., “Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen. (Fortsetzung)”, J. Reine Angew. Math., 21 (1840), 193–225 | DOI | MR
[28] Kummer E.E., “Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen. (Fortsetzung)”, J. Reine Angew. Math., 21 (1840), 328–371 | DOI | MR
[29] Laporta S., “High-precision calculation of the 4-loop contribution to the electron $g-2$ in QED”, Phys. Lett. B, 772 (2017), 232–238, arXiv: 1704.06996 | DOI
[30] Laporta S., Remiddi E., “The analytical value of the electron $(g-2)$ at order $\alpha^3$ in QED”, Phys. Lett. B, 379 (1996), 283–291, arXiv: hep-ph/9602417 | DOI
[31] Lehmer D.H., “Interesting series involving the central binomial coefficient”, Amer. Math. Monthly, 92 (1985), 449–457 | DOI | MR | Zbl
[32] Maître D., “HPL, a Mathematica implementation of the harmonic polylogarithms”, Comput. Phys. Comm., 174 (2006), 222–240, arXiv: ; software available at hep-ph/0507152https://www.physik.uzh.ch/data/HPL/ | DOI
[33] Maître D., “Extension of HPL to complex arguments”, Comput. Phys. Comm., 183 (2012), 846, arXiv: hep-ph/0703052 | DOI
[34] Panzer E., “Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals”, Comput. Phys. Comm., 188 (2015), 148–166, arXiv: 1403.3385 | DOI | Zbl
[35] Schnetz O., “The Galois coaction on the electron anomalous magnetic moment”, Commun. Number Theory Phys., 12 (2018), 335–354, arXiv: 1711.05118 | DOI | MR | Zbl
[36] Sun Z.-W., Zhou Y., Evaluations of $\sum_{k=1}^\infty \frac{x^k}{k^2\binom{3k}{k}}$ and related series, arXiv: 2401.12083
[37] van der Poorten A.J., “Some wonderful formulae $\ldots \ $footnotes to Apéry's proof of the irrationality of $\zeta (3)$”, Théorie des Nombres (1978/1979), v. 2, Séminaire Delange-Pisot-Poitou, 20, Secrétariat Math., Paris, 1980, 29, 7 pp. | MR
[38] Wang W., Xu C., “Alternating multiple zeta values, and explicit formulas of some Euler–Apéry-type series”, European J. Combin., 93 (2021), 103283, 25 pp., arXiv: 1909.02943 | DOI | MR | Zbl
[39] Weinzierl S., “Expansion around half-integer values, binomial sums, and inverse binomial sums”, J. Math. Phys., 45 (2004), 2656–2673, arXiv: hep-ph/0402131 | DOI | MR | Zbl
[40] Young P.T., “From Madhava–Leibniz to Lehmer's limit”, Amer. Math. Monthly, 129 (2022), 524–538 | DOI | MR | Zbl
[41] Zhou Y., Hyper-Mahler measures via Goncharov–Deligne cyclotomy, arXiv: 2210.17243
[42] Zhou Y., “Sun's series via cyclotomic multiple zeta values”, SIGMA, 19 (2023), 074, 20 pp., arXiv: 2306.04638 | DOI | MR | Zbl
[43] Zucker I.J., “On the series $\sum^\infty_{k=1}(^{2k}_{\;k})^{-1}k^{-n}$ and related sums”, J. Number Theory, 20 (1985), 92–102 | DOI | MR | Zbl