Mots-clés : Riemann–Cartan
@article{SIGMA_2024_20_a77,
author = {David D. Mcnutt and Alan A. Coley and Robert J. van den Hoogen},
title = {Symmetries in {Riemann{\textendash}Cartan} {Geometries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a77/}
}
TY - JOUR AU - David D. Mcnutt AU - Alan A. Coley AU - Robert J. van den Hoogen TI - Symmetries in Riemann–Cartan Geometries JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a77/ LA - en ID - SIGMA_2024_20_a77 ER -
David D. Mcnutt; Alan A. Coley; Robert J. van den Hoogen. Symmetries in Riemann–Cartan Geometries. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a77/
[1] Åman J.E., Fonseca-Neto J.B., MacCallum M.A.H., Rebouças M.J., “Riemann–Cartan spacetimes of Gödel type”, Classical Quantum Gravity, 15 (1998), 1089–1101, arXiv: gr-qc/9711064 | DOI | MR
[2] Bolejko K., Celerier M., “Szekeres Swiss-cheese model and supernova observations”, Phys. Rev. D, 82 (2010), 103510, 8 pp., arXiv: 1005.2584 | DOI
[3] Coley A.A., van den Hoogen R.J., McNutt D.D., “Symmetry and equivalence in teleparallel gravity”, J. Math. Phys., 61 (2020), 072503, 26 pp., arXiv: 1911.03893 | DOI | MR | Zbl
[4] Fonseca-Neto J.B., Reboucas M.J., MacCallum M.A.H., “Algebraic computing in torsion theories of gravitation”, Math. Comput. Simulation, 42 (1996), 739–748 | DOI | MR | Zbl
[5] Fonseca-Neto J.B., Rebouças M.J., Teixeira A.F.F., “The equivalence problem in torsion theories of gravitation”, J. Math. Phys., 33 (1992), 2574–2577 | DOI | MR | Zbl
[6] Greub W., Linear algebra, Grad. Texts Math., 23, 4th ed., Springer, New York, 1975 | DOI | MR | Zbl
[7] Hehl F.W., McCrea J.D., Mielke E.W., Ne'eman Y., “Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance”, Phys. Rep., 258 (1995), 1–171, arXiv: gr-qc/9402012 | DOI | MR
[8] Hehl F.W., von der Heyde P., Kerlick G.D., Nester J.M., “General relativity with spin and torsion: foundations and prospect”, Rev. Modern Phys., 48 (1976), 393–416 | DOI | MR | Zbl
[9] Hohmann M., “General covariant symmetric teleparallel cosmology”, Phys. Rev. D, 104 (2021), 124077, 16 pp., arXiv: 2109.01525 | DOI | MR
[10] Hohmann M., Järv L., Krššák M., Pfeifer C., “Modified teleparallel theories of gravity in symmetric spacetimes”, Phys. Rev. D, 100 (2019), 084002, 23 pp., arXiv: 1901.05472 | DOI | MR
[11] Krššák M., Pereira J.G., “Spin connection and renormalization of teleparallel action”, Eur. Phys. J. C, 75 (2015), 519, 8 pp., arXiv: 1504.07683 | DOI
[12] McNutt D.D., Coley A.A., van den Hoogen R.J., “A frame based approach to computing symmetries with non-trivial isotropy groups”, J. Math. Phys., 64 (2023), 032503, 19 pp., arXiv: 2302.11493 | DOI | MR | Zbl
[13] Obukhov Yu.N., “Poincaré gauge gravity primer”, Modified and Quantum Gravity – From Theory to Experimental Searches on All Scales, Lecture Notes in Phys., 1017, Springer, Cham, 2023, 105–143, arXiv: 2206.05205 | DOI | MR
[14] Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[15] Pfeifer C., A quick guide to spacetime symmetry and symmetric solutions in teleparallel gravity, arXiv: 2201.04691
[16] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, Cambridge Monogr. Math. Phys., 2nd ed., Cambridge University Press, Cambridge, 2003 | DOI | MR
[17] Trautman A., Einstein–Cartan theory, arXiv: gr-qc/0606062
[18] Tsamparlis M., “Methods for deriving solutions in generalized theories of gravitation: the Einstein–Cartan theory”, Phys. Rev. D, 24 (1981), 1451–1457 | DOI | MR
[19] Yano K., The theory of Lie derivatives and its applications, Courier Dover Publications, New York, 2020 | MR