Symmetries in Riemann–Cartan Geometries
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Riemann–Cartan geometries are geometries that admit non-zero curvature and torsion tensors. These geometries have been investigated as geometric frameworks for potential theories in physics including quantum gravity theories and have many important differences when compared to Riemannian geometries. One notable difference, is the number of symmetries for a Riemann–Cartan geometry is potentially smaller than the number of Killing vector fields for the metric. In this paper, we will review the investigation of symmetries in Riemann–Cartan geometries and the mathematical tools used to determine geometries that admit a given group of symmetries. As an illustration, we present new results by determining all static spherically symmetric and all stationary spherically symmetric Riemann–Cartan geometries. Furthermore, we have determined the subclasses of spherically symmetric Riemann–Cartan geometries that admit a seven-dimensional group of symmetries.
Keywords: symmetry, frame formalism, local homogeneity.
Mots-clés : Riemann–Cartan
@article{SIGMA_2024_20_a77,
     author = {David D. Mcnutt and Alan A. Coley and Robert J. van den Hoogen},
     title = {Symmetries in {Riemann{\textendash}Cartan} {Geometries}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a77/}
}
TY  - JOUR
AU  - David D. Mcnutt
AU  - Alan A. Coley
AU  - Robert J. van den Hoogen
TI  - Symmetries in Riemann–Cartan Geometries
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a77/
LA  - en
ID  - SIGMA_2024_20_a77
ER  - 
%0 Journal Article
%A David D. Mcnutt
%A Alan A. Coley
%A Robert J. van den Hoogen
%T Symmetries in Riemann–Cartan Geometries
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a77/
%G en
%F SIGMA_2024_20_a77
David D. Mcnutt; Alan A. Coley; Robert J. van den Hoogen. Symmetries in Riemann–Cartan Geometries. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a77/

[1] Åman J.E., Fonseca-Neto J.B., MacCallum M.A.H., Rebouças M.J., “Riemann–Cartan spacetimes of Gödel type”, Classical Quantum Gravity, 15 (1998), 1089–1101, arXiv: gr-qc/9711064 | DOI | MR

[2] Bolejko K., Celerier M., “Szekeres Swiss-cheese model and supernova observations”, Phys. Rev. D, 82 (2010), 103510, 8 pp., arXiv: 1005.2584 | DOI

[3] Coley A.A., van den Hoogen R.J., McNutt D.D., “Symmetry and equivalence in teleparallel gravity”, J. Math. Phys., 61 (2020), 072503, 26 pp., arXiv: 1911.03893 | DOI | MR | Zbl

[4] Fonseca-Neto J.B., Reboucas M.J., MacCallum M.A.H., “Algebraic computing in torsion theories of gravitation”, Math. Comput. Simulation, 42 (1996), 739–748 | DOI | MR | Zbl

[5] Fonseca-Neto J.B., Rebouças M.J., Teixeira A.F.F., “The equivalence problem in torsion theories of gravitation”, J. Math. Phys., 33 (1992), 2574–2577 | DOI | MR | Zbl

[6] Greub W., Linear algebra, Grad. Texts Math., 23, 4th ed., Springer, New York, 1975 | DOI | MR | Zbl

[7] Hehl F.W., McCrea J.D., Mielke E.W., Ne'eman Y., “Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance”, Phys. Rep., 258 (1995), 1–171, arXiv: gr-qc/9402012 | DOI | MR

[8] Hehl F.W., von der Heyde P., Kerlick G.D., Nester J.M., “General relativity with spin and torsion: foundations and prospect”, Rev. Modern Phys., 48 (1976), 393–416 | DOI | MR | Zbl

[9] Hohmann M., “General covariant symmetric teleparallel cosmology”, Phys. Rev. D, 104 (2021), 124077, 16 pp., arXiv: 2109.01525 | DOI | MR

[10] Hohmann M., Järv L., Krššák M., Pfeifer C., “Modified teleparallel theories of gravity in symmetric spacetimes”, Phys. Rev. D, 100 (2019), 084002, 23 pp., arXiv: 1901.05472 | DOI | MR

[11] Krššák M., Pereira J.G., “Spin connection and renormalization of teleparallel action”, Eur. Phys. J. C, 75 (2015), 519, 8 pp., arXiv: 1504.07683 | DOI

[12] McNutt D.D., Coley A.A., van den Hoogen R.J., “A frame based approach to computing symmetries with non-trivial isotropy groups”, J. Math. Phys., 64 (2023), 032503, 19 pp., arXiv: 2302.11493 | DOI | MR | Zbl

[13] Obukhov Yu.N., “Poincaré gauge gravity primer”, Modified and Quantum Gravity – From Theory to Experimental Searches on All Scales, Lecture Notes in Phys., 1017, Springer, Cham, 2023, 105–143, arXiv: 2206.05205 | DOI | MR

[14] Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[15] Pfeifer C., A quick guide to spacetime symmetry and symmetric solutions in teleparallel gravity, arXiv: 2201.04691

[16] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, Cambridge Monogr. Math. Phys., 2nd ed., Cambridge University Press, Cambridge, 2003 | DOI | MR

[17] Trautman A., Einstein–Cartan theory, arXiv: gr-qc/0606062

[18] Tsamparlis M., “Methods for deriving solutions in generalized theories of gravitation: the Einstein–Cartan theory”, Phys. Rev. D, 24 (1981), 1451–1457 | DOI | MR

[19] Yano K., The theory of Lie derivatives and its applications, Courier Dover Publications, New York, 2020 | MR