@article{SIGMA_2024_20_a74,
author = {Amparo Gil and Javier Segura and Nico M. Temme},
title = {McMahon-Type {Asymptotic} {Expansions} of the {Zeros} of the {Coulomb} {Wave} {Functions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a74/}
}
TY - JOUR AU - Amparo Gil AU - Javier Segura AU - Nico M. Temme TI - McMahon-Type Asymptotic Expansions of the Zeros of the Coulomb Wave Functions JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a74/ LA - en ID - SIGMA_2024_20_a74 ER -
%0 Journal Article %A Amparo Gil %A Javier Segura %A Nico M. Temme %T McMahon-Type Asymptotic Expansions of the Zeros of the Coulomb Wave Functions %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a74/ %G en %F SIGMA_2024_20_a74
Amparo Gil; Javier Segura; Nico M. Temme. McMahon-Type Asymptotic Expansions of the Zeros of the Coulomb Wave Functions. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a74/
[1] Abramowitz M., “Asymptotic expansions of Coulomb wave functions”, Quart. Appl. Math., 7 (1949), 75–84 | DOI | MR | Zbl
[2] Ball J.S., “Automatic computation of zeros of Bessel functions and other special functions”, SIAM J. Sci. Comput., 21 (1999), 1458–1464 | DOI | MR
[3] Ikebe Y., “The zeros of regular Coulomb wave functions and of their derivatives”, Math. Comp., 29 (1975), 878–887 | DOI | MR | Zbl
[4] Luna B.K., Papenbrock T., “Low-energy bound states, resonances, and scattering of light ions”, Phys. Rev. C, 100 (2019), 054307, 17 pp., arXiv: 1907.11345 | DOI
[5] Mcmahon J., “On the roots of the Bessel and certain related functions”, Ann. of Math., 9 (1894), 23–30 | DOI | MR
[6] Miyazaki Y., Kikuchi Y., Cai D., Ikebe Y., “Error analysis for the computation of zeros of regular Coulomb wave function and its first derivative”, Math. Comp., 70 (2001), 1195–1204 | DOI | MR | Zbl
[7] Olver F.W.J., Maximon L.C., “Bessel functions”, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010, 215–286 | MR
[8] Segura J., “Reliable computation of the zeros of solutions of second order linear ODEs using a fourth order method”, SIAM J. Numer. Anal., 48 (2010), 452–469 | DOI | MR | Zbl
[9] Temme N.M., Asymptotic methods for integrals, Ser. Anal., 6, World Scientific Publishing, Hackensack, NJ, 2014 | DOI | MR
[10] Thompson I.J., “Coulomb wave functions”, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010, 741–756 | MR
[11] Watson G.N., A treatise on the theory of Bessel functions, Cambridge Math. Lib., 2nd ed., Cambridge University Press, Cambridge, 1944 | MR | Zbl