Asymptotics of the Humbert Function $\Psi_1$ for Two Large Arguments
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently, Wald and Henkel (2018) derived the leading-order estimate of the Humbert functions $\Phi_2$, $\Phi_3$ and $\Xi_2$ for two large arguments, but their technique cannot handle the Humbert function $\Psi_1$. In this paper, we establish the leading asymptotic behavior of the Humbert function $\Psi_1$ for two large arguments. Our proof is based on a connection formula of the Gauss hypergeometric function and Nagel's approach (2004). This approach is also applied to deduce asymptotic expansions of the generalized hypergeometric function $_pF_q$ $(p\leqslant q)$ for large parameters, which are not contained in NIST handbook.
Keywords: Humbert function, asymptotics, generalized hypergeometric function.
@article{SIGMA_2024_20_a73,
     author = {Peng-Cheng Hang and Min-Jie Luo},
     title = {Asymptotics of the {Humbert} {Function} $\Psi_1$ for {Two} {Large} {Arguments}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a73/}
}
TY  - JOUR
AU  - Peng-Cheng Hang
AU  - Min-Jie Luo
TI  - Asymptotics of the Humbert Function $\Psi_1$ for Two Large Arguments
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a73/
LA  - en
ID  - SIGMA_2024_20_a73
ER  - 
%0 Journal Article
%A Peng-Cheng Hang
%A Min-Jie Luo
%T Asymptotics of the Humbert Function $\Psi_1$ for Two Large Arguments
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a73/
%G en
%F SIGMA_2024_20_a73
Peng-Cheng Hang; Min-Jie Luo. Asymptotics of the Humbert Function $\Psi_1$ for Two Large Arguments. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a73/

[1] Abramowitz M., Stegun I.A. (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, NBS Appl. Math. Ser., 55, U.S. Government Printing Office, Washington, DC, 1964 | MR

[2] Ahbli K., Mouayn Z., “A generating function and formulae defining the first-associated Meixner–Pollaczek polynomials”, Integral Transforms Spec. Funct., 29 (2018), 352–366, arXiv: 1708.03358 | DOI | MR | Zbl

[3] Belafhal A., Saad F., “Conversion of circular beams by a spiral phase plate: generation of generalized Humbert beams”, Optik, 138 (2017), 516–528 | DOI

[4] Borghi R., ““Analytical continuation” of flattened Gaussian beams”, J. Opt. Soc. Amer. A, 40 (2023), 816–823 | DOI

[5] Brychkov Yu. A., Saad N., “On some formulas for the Appell function $F_2(a,b,b';c,c';w;z)$”, Integral Transforms Spec. Funct., 25 (2014), 111–123 | DOI | MR | Zbl

[6] Bühring W., “The behavior at unit argument of the hypergeometric function $_3F_2$”, SIAM J. Math. Anal., 18 (1987), 1227–1234 | DOI | MR | Zbl

[7] Bühring W., “Generalized hypergeometric functions at unit argument”, Proc. Amer. Math. Soc., 114 (1992), 145–153 | DOI | MR | Zbl

[8] Butzer P.L., Kilbas A.A., Trujillo J.J., “Stirling functions of the second kind in the setting of difference and fractional calculus”, Numer. Funct. Anal. Optim., 24 (2003), 673–711 | DOI | MR | Zbl

[9] Carlson B.C., “Some inequalities for hypergeometric functions”, Proc. Amer. Math. Soc., 17 (1966), 32–39 | DOI | MR | Zbl

[10] Choi J., Hasanov A., “Applications of the operator $H(\alpha,\beta)$ to the Humbert double hypergeometric functions”, Comput. Math. Appl., 61 (2011), 663–671, arXiv: 0810.3796 | DOI | MR | Zbl

[11] El Halba E.M., Nebdi H., Boustimi M., Belafhal A., “On the Humbert confluent hypergeometric function used in laser field”, Phys. Chem. News, 73, 2014, 90–93

[12] Fields J.L., “Confluent expansions”, Math. Comp., 21 (1967), 189–197 | DOI | MR | Zbl

[13] Hang P.-C., Luo M.-J., “Asymptotics of {S}aran's hypergeometric function $F_K$”, J. Math. Anal. Appl., 541 (2025), 128707, 19 pp., arXiv: 2405.00325 | DOI | MR

[14] Humbert P., “IX–The confluent hypergeometric functions of two variables”, Proc. Roy. Soc. Edinburgh, 41 (1922), 73–96 | DOI

[15] Joshi C.M., Arya J.P., “Inequalities for certain hypergeometric functions”, Math. Comp., 38 (1982), 201–205 | DOI | MR | Zbl

[16] Juršėnas R., “On the definite integral of two confluent hypergeometric functions related to the Kampé de Fériet double series”, Lith. Math. J., 54 (2014), 61–73, arXiv: 1301.3039 | DOI | MR | Zbl

[17] Knottnerus U.J., Approximation formulae for generalized hypergeometric functions for large values of the parameters, J. B. Wolters, Groningen, 1960 | MR | Zbl

[18] Lin Y., Wong R., “Asymptotics of generalized hypergeometric functions”, Frontiers in Orthogonal Polynomials and $q$-Series, Contemp. Math. Appl. Monogr. Expo. Lect. Notes, 1, World Scientific Publishing, Hackensack, NJ, 2018, 497–521 | DOI | MR | Zbl

[19] Luke Y.L., The special functions and their approximations, v. II, Math. Sci. Eng., 53, Academic Press, New York, 1969 | MR | Zbl

[20] Luo M.-J., Raina R.K., “On certain results related to the hypergeometric function $F_K$”, J. Math. Anal. Appl., 504 (2021), 125439, 18 pp. | DOI | MR | Zbl

[21] Nagel B., “Confluence expansions of the generalized hypergeometric function”, J. Math. Phys., 45 (2004), 495–508 | DOI | MR | Zbl

[22] Olver F.W.J., Olde Daalhuis A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V., Cohl H.S., McClain M.A. (eds.), NIST digital library of mathematical functions, Release 1.2.1 of 2024-06-15 https://dlmf.nist.gov/

[23] Paris R.B., “A Kummer-type transformation for a $_2F_2$ hypergeometric function”, J. Comput. Appl. Math., 173 (2005), 379–382 | DOI | MR | Zbl

[24] Pólya G., Szegő G., Problems and theorems in analysis, v. II, Classics Math., Theory of functions, zeros, polynomials, determinants, number theory, geometry, Springer, Berlin, 1998 | DOI | MR

[25] Van Gorder R.A., “Computation of certain infinite series of the form $\sum f(n)n^k$ for arbitrary real-valued $k$”, Appl. Math. Comput., 215 (2009), 1209–1216 | DOI | MR | Zbl

[26] Wald S., Henkel M., “On integral representations and asymptotics of some hypergeometric functions in two variables”, Integral Transforms Spec. Funct., 29 (2018), 95–112, arXiv: 1707.06275 | DOI | MR | Zbl