@article{SIGMA_2024_20_a71,
author = {Andrey Losev and Vyacheslav Lysov},
title = {Tropical {Mirror}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a71/}
}
Andrey Losev; Vyacheslav Lysov. Tropical Mirror. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a71/
[1] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385, arXiv: hep-th/9405029 | DOI | MR
[2] Feynman R.P., Hibbs A.R., Quantum mechanics and path integrals, Dover Publications, Inc., Mineola, NY, 2010 | MR | Zbl
[3] Frenkel E., Losev A., “Mirror symmetry in two steps: A-I-B”, Comm. Math. Phys., 269 (2007), 39–86, arXiv: hep-th/0505131 | DOI | MR | Zbl
[4] Fulton W., Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton University Press, Princeton, NJ, 1993 | DOI | MR | Zbl
[5] Gathmann A., Markwig H., “Kontsevich's formula and the WDVV equations in tropical geometry”, Adv. Math., 217 (2008), 537–560, arXiv: math.AG/0509628 | DOI | MR | Zbl
[6] Givental A., Kim B., “Quantum cohomology of flag manifolds and Toda lattices”, Comm. Math. Phys., 168 (1995), 609–641, arXiv: hep-th/9312096 | DOI | MR | Zbl
[7] Gross A., “Intersection theory on tropicalizations of toroidal embeddings”, Proc. Lond. Math. Soc., 116 (2018), 1365–1405, arXiv: 1510.04604 | DOI | MR | Zbl
[8] Gross M., “Mirror symmetry for $\mathbb P^2$ and tropical geometry”, Adv. Math., 224 (2010), 169–245, arXiv: 0903.1378 | DOI | MR | Zbl
[9] Gross M., Tropical geometry and mirror symmetry, CBMS Reg. Conf. Ser. Math., 114, American Mathematical Society, Providence, RI, 2011 | DOI | MR | Zbl
[10] Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R., Zaslow E., Mirror symmetry, Clay Math. Monogr., 1, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
[11] Hori K., Vafa C., Mirror symmetry, arXiv: hep-th/0002222
[12] Kontsevich M., Manin Yu., “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164 (1994), 525–562, arXiv: hep-th/9402147 | DOI | MR | Zbl
[13] Losev A., “TQFT, homological algebra and elements of K Saito's theory of Primitive form: an attempt of mathematical text written by mathematical physicist”, Primitive Forms and Related Subjects – Kavli IPMU 2014, Adv. Stud. Pure Math., 83, Mathematical Society of Japan, Tokyo, 2019, 269–293 | DOI | MR | Zbl
[14] Losev A., Lysov V., Tropical mirror symmetry: correlation functions, arXiv: 2301.01687
[15] Losev A., Lysov V., Tropical mirror for toric surfaces, arXiv: 2305.00423
[16] Losev A., Shadrin S., “From Zwiebach invariants to Getzler relation”, Comm. Math. Phys., 271 (2007), 649–679, arXiv: math.QA/0506039 | DOI | MR | Zbl
[17] Lysov V., “Anticommutativity equation in topological quantum mechanics”, JETP Lett., 76 (2002), 724–727, arXiv: hep-th/0212005 | DOI
[18] Mandel T., Ruddat H., “Descendant log Gromov–Witten invariants for toric varieties and tropical curves”, Trans. Amer. Math. Soc., 373 (2020), 1109–1152, arXiv: 1612.02402 | DOI | MR | Zbl
[19] Mandel T., Ruddat H., “Tropical quantum field theory, mirror polyvector fields, and multiplicities of tropical curves”, Int. Math. Res. Not., 2023 (2023), 3249–3304, arXiv: 1902.07183 | DOI | MR | Zbl
[20] Mikhalkin G., “Amoebas of algebraic varieties and tropical geometry”, Different Faces of Geometry, Int. Math. Ser. (N.Y.), 3, Kluwer, New York, 2004, 257–300, arXiv: math.AG/0403015 | DOI | MR | Zbl
[21] Mikhalkin G., “Enumerative tropical algebraic geometry in $\mathbb R^2$”, J. Amer. Math. Soc., 18 (2005), 313–377, arXiv: math.AG/0312530 | DOI | MR | Zbl
[22] Mikhalkin G., Introduction to tropical geometry (notes from the IMPA lectures in Summer 2007, arXiv: 0709.1049
[23] Mikhalkin G., Rau J., Tropical geometry https://www.math.uni-tuebingen.de/user/jora/downloads/main.pdf
[24] Nishinou T., Siebert B., “Toric degenerations of toric varieties and tropical curves”, Duke Math. J., 135 (2006), 1–51, arXiv: math.AG/0409060 | DOI | MR | Zbl
[25] Polchinski J., String theory, v. I, Cambridge Monogr. Math. Phys., An introduction to the bosonic string, Cambridge University Press, Cambridge, 2005 | DOI | MR
[26] Polchinski J., String theory, v. II, Cambridge Monogr. Math. Phys., Superstring theory and beyond, Cambridge University Press, Cambridge, 2005 | DOI | MR
[27] Ranganathan D., “Skeletons of stable maps I: Rational curves in toric varieties”, J. Lond. Math. Soc., 95 (2017), 804–832, arXiv: 1506.03754 | DOI | MR | Zbl
[28] Saito K., “Period mapping associated to a primitive form”, Publ. Res. Inst. Math. Sci., 19 (1983), 1231–1264 | DOI | MR | Zbl
[29] Witten E., “Topological sigma models”, Comm. Math. Phys., 118 (1988), 411–449 | DOI | MR | Zbl