Tracking Control for $(x,u)$-Flat Systems by Quasi-Static Feedback of Classical States
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that for flat systems the tracking control problem can be solved by utilizing a linearizing quasi-static feedback of generalized states. If measurements (or estimates) of a so-called generalized Brunovský state are available, a linear, decoupled and asymptotically stable tracking error dynamics can be achieved. However, from a practical point of view, it is often desirable to achieve the same tracking error dynamics by feedback of a classical state instead of a generalized one. This is due to the fact that the components of a classical state typically correspond to measurable physical quantities, whereas a generalized Brunovský state often contains higher order time derivatives of the (fictitious) flat output which are not directly accessible by measurements. In this paper, a systematic solution for the tracking control problem based on quasi-static feedback and measurements of classical states only is derived for the subclass of $(x,u)$-flat systems.
Keywords: flatness, tracking control, nonlinear control.
@article{SIGMA_2024_20_a70,
     author = {Conrad Gst\"ottner and Bernd Kolar and Markus Sch\"oberl},
     title = {Tracking {Control} for $(x,u)${-Flat} {Systems} by {Quasi-Static} {Feedback} of {Classical} {States}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a70/}
}
TY  - JOUR
AU  - Conrad Gstöttner
AU  - Bernd Kolar
AU  - Markus Schöberl
TI  - Tracking Control for $(x,u)$-Flat Systems by Quasi-Static Feedback of Classical States
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a70/
LA  - en
ID  - SIGMA_2024_20_a70
ER  - 
%0 Journal Article
%A Conrad Gstöttner
%A Bernd Kolar
%A Markus Schöberl
%T Tracking Control for $(x,u)$-Flat Systems by Quasi-Static Feedback of Classical States
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a70/
%G en
%F SIGMA_2024_20_a70
Conrad Gstöttner; Bernd Kolar; Markus Schöberl. Tracking Control for $(x,u)$-Flat Systems by Quasi-Static Feedback of Classical States. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a70/

[1] Chetverikov V.N., “Controllability of flat systems”, Differ. Equ., 43 (2007), 1558–1568 | DOI | MR | Zbl

[2] Delaleau E., Fliess M., “An algebraic interpretation of the structure algorithm with an application to feedback decoupling”, IFAC Proc. Vol., 25 (1992), 179–184 | DOI | MR

[3] Delaleau E., Fliess M., “Algorithme de structure, filtrations et découplage”, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 101–106 | MR | Zbl

[4] Delaleau E., Pereira da Silva P.S., “Filtrations in feedback synthesis. I Systems and feedbacks”, Forum Math., 10 (1998), 147–174 | DOI | MR | Zbl

[5] Delaleau E., Pereira da Silva P.S., “Filtrations in feedback synthesis. II Input-output decoupling and disturbance decoupling”, Forum Math., 10 (1998), 259–276 | DOI | MR | Zbl

[6] Delaleau E., Rudolph J., “Decoupling and linearization by quasi-static feedback of generalized states”, Proceedings of 3rd European Control Conference (Rome, 1995), 1995, 1069–1074 | MR

[7] Delaleau E., Rudolph J., “Control of flat systems by quasi-static feedback of generalized states”, Internat. J. Control, 71 (1998), 745–765 | DOI | MR | Zbl

[8] Di Benedetto M.D., Grizzle J.W., Moog C.H., “Rank invariants of nonlinear systems”, SIAM J. Control Optim., 27 (1989), 658–672 | DOI | MR | Zbl

[9] Fliess M., Lévine J., Martin P., Rouchon P., “On differentially flat nonlinear systems”, IFAC Proc. Vol., 25 (1992), 408–412 | DOI | MR

[10] Fliess M., Lévine J., Martin P., Rouchon P., “Sur les systèmes non linéaires différentiellement plats”, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 619–624 | MR | Zbl

[11] Fliess M., Lévine J., Martin P., Rouchon P., “Flatness and defect of non-linear systems: introductory theory and examples”, Internat. J. Control, 61 (1995), 1327–1361 | DOI | MR | Zbl

[12] Fliess M., Lévine J., Martin P., Rouchon P., “A Lie–Bäcklund approach to equivalence and flatness of nonlinear systems”, IEEE Trans. Automat. Control, 44 (1999), 922–937 | DOI | MR | Zbl

[13] Grizzle J.W., Di Benedetto M.D., Moog C.H., “Computing the differential output rank of a nonlinear system”, Proceedings of 26th IEEE Conference on Decision and Control, IEEE, 1987, 142–145 | DOI | MR

[14] Gstöttner C., Kolar B., Schöberl M., “On the linearization of flat two-input systems by prolongations and applications to control design”, IFAC-PapersOnLine, 53 (2020), 5479–5486, arXiv: 1910.07215 | DOI

[15] Gstöttner C., Kolar B., Schöberl M., “A structurally flat triangular form based on the extended chained form”, Internat. J. Control, 95 (2022), 1144–1163, arXiv: 2007.09935 | DOI | MR | Zbl

[16] Gstöttner C., Kolar B., Schöberl M., “A flat system possessing no $(x, u)$-flat output”, IEEE Control Syst. Lett., 7 (2023), 1033–1038, arXiv: 2206.03845 | DOI | MR

[17] Gstöttner C., Kolar B., Schöberl M., “Necessary and sufficient conditions for the linearisability of two-input systems by a two-dimensional endogenous dynamic feedback”, Internat. J. Control, 96 (2023), 800–821, arXiv: 2106.14722 | DOI | MR | Zbl

[18] Hagenmeyer V., Delaleau E., “Exact feedforward linearization based on differential flatness”, Internat. J. Control, 76 (2003), 537–556 | DOI | MR | Zbl

[19] Hagenmeyer V., Delaleau E., “Robustness analysis of exact feedforward linearization based on differential flatness”, Automatica J. IFAC, 39 (2003), 1941–1946 | DOI | MR | Zbl

[20] Isidori A., Nonlinear control systems, Comm. Control Engrg. Ser., 3rd ed., Springer, Berlin, 1995 | DOI | MR | Zbl

[21] Kolar B., Contributions to the differential geometric analysis and control of flat systems, Ph.D. Thesis, Johannes Kepler Universität Linz, Aachen, 2016

[22] Kolar B., Rams H., Schlacher K., “Time-optimal flatness based control of a gantry crane”, Control Eng. Pract., 60 (2017), 18–27 | DOI

[23] Kolar B., Schöberl M., Schlacher K., “Properties of flat systems with regard to the parameterization of the system variables by the flat output”, IFAC-PapersOnLine, 49 (2016), 814–819 | DOI

[24] Kugi A., Kiefer T., “Nichtlineare Trajektorienfolgeregelung für einen Laborhelikopter”, e+i Elektrotechnik und Informationstechnik, 122 (2005), 300–307 | DOI

[25] Martin P., Contribution à l'étude des systèmes différentiellement plats, Ph.D. Thesis, École Nationale Supérieure des Mines de Paris, 1992

[26] Martin P., “An intrinsic sufficient condition for regular decoupling”, Systems Control Lett., 20 (1993), 383–391 | DOI | MR | Zbl

[27] Martin P., Murray R., Rouchon P., “Flat systems”, Plenary Lectures and Mini-Courses, Proceedings of 4th European Control Conference (ECC), 1997, 211–264

[28] Moog C.H., “Nonlinear decoupling and structure at infinity”, Math. Control Signals Systems, 1 (1988), 257–268 | DOI | MR | Zbl

[29] Nicolau F., Respondek W., “Flatness of multi-input control-affine systems linearizable via one-fold prolongation”, SIAM J. Control Optim., 55 (2017), 3171–3203 | DOI | MR | Zbl

[30] Nicolau F., Respondek W., “Normal forms for multi-input flat systems of minimal differential weight”, Internat. J. Robust Nonlinear Control, 29 (2019), 3139–3162 | DOI | MR | Zbl

[31] Nijmeijer H., “Right-invertibility for a class of nonlinear control systems: a geometric approach”, Systems Control Lett., 7 (1986), 125–132 | DOI | MR | Zbl

[32] Nijmeijer H., Respondek W., “Dynamic input-output decoupling of nonlinear control systems”, IEEE Trans. Automat. Control, 33 (1988), 1065–1070 | DOI | MR | Zbl

[33] Nijmeijer H., Schumacher J.M., “Zeros at infinity for affine nonlinear control systems”, IEEE Trans. Automat. Control, 30 (1985), 566–573 | DOI | MR | Zbl

[34] Respondek W., “Right and left invertibility of nonlinear control systems”, Nonlinear Controllability and Optimal Control, Monogr. Textbooks Pure Appl. Math., 133, Dekker, New York, 1990, 133–176 | MR | Zbl

[35] Rudolph J., “Well-formed dynamics under quasi-static state feedback”, Geometry in Nonlinear Control and Differential Inclusions (Warsaw, 1993), Banach Center Publ., 32, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1995, 349–360 | DOI | MR | Zbl

[36] Rudolph J., Flatness-based control: An introduction, Shaker Verlag, Düren, 2021 | DOI

[37] Rudolph J., Delaleau E., “Some examples and remarks on quasi-static feedback of generalized states”, Automatica J. IFAC, 34 (1998), 993–999 | DOI | MR | Zbl

[38] Spong M., Vidyasagar M., Robot dynamics and control, Wiley, 1989