Mots-clés : soliton condensate, kurtosis
@article{SIGMA_2024_20_a69,
author = {Alexander Tovbis and Fudong Wang},
title = {Soliton {Condensates} for the {Focusing} {Nonlinear} {Schr\"odinger} {Equation:} a {Non-Bound} {State} {Case}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a69/}
}
TY - JOUR AU - Alexander Tovbis AU - Fudong Wang TI - Soliton Condensates for the Focusing Nonlinear Schrödinger Equation: a Non-Bound State Case JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a69/ LA - en ID - SIGMA_2024_20_a69 ER -
%0 Journal Article %A Alexander Tovbis %A Fudong Wang %T Soliton Condensates for the Focusing Nonlinear Schrödinger Equation: a Non-Bound State Case %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a69/ %G en %F SIGMA_2024_20_a69
Alexander Tovbis; Fudong Wang. Soliton Condensates for the Focusing Nonlinear Schrödinger Equation: a Non-Bound State Case. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a69/
[1] Bertola M., Tovbis A., “Meromorphic differentials with imaginary periods on degenerating hyperelliptic curves”, Anal. Math. Phys., 5 (2015), 1–22 | DOI | MR | Zbl
[2] Byrd P.F., Friedman M.D., Handbook of elliptic integrals for engineers and scientists, Grundlehren Math. Wiss., 67, 2nd ed., Springer, New York, 1971 | DOI | MR | Zbl
[3] Congy T., El G.A., Roberti G., Tovbis A., “Dispersive hydrodynamics of soliton condensates for the Korteweg–de Vries equation”, J. Nonlinear Sci., 33 (2023), 104, 45 pp., arXiv: 2208.04472 | DOI | MR | Zbl
[4] Congy T., El G.A., Roberti G., Tovbis A., Randoux S., Suret P., “Statistics of extreme events in integrable turbulence”, Phys. Rev. Lett., 132 (2024), 207201, 7 pp., arXiv: 2307.08884 | DOI | MR
[5] Dafermos C.M., Hyperbolic conservation laws in continuum physics, Grundlehren Math. Wiss., 325, 3rd ed., Springer, Berlin, 2010 | DOI | MR | Zbl
[6] Doyon B., Dubail J., , Konik R., Yoshimura T., “Large-scale description of interacting one-dimensional bose gases: generalized hydrodynamics supersedes conventional hydrodynamics”, Phys. Rev. Lett., 119 (2017), 195301, 7 pp., arXiv: 1704.04151 | DOI
[7] El G.A., “The thermodynamic limit of the Whitham equations”, Phys. Lett. A, 311 (2003), 374–383, arXiv: nlin.SI/0310014 | DOI | MR | Zbl
[8] El G.A., “Soliton gas in integrable dispersive hydrodynamics”, J. Stat. Mech. Theory Exp., 2021 (2021), 114001, 69 pp., arXiv: 2104.05812 | DOI | MR | Zbl
[9] El G.A., Tovbis A., “Spectral theory of soliton and breather gases for the focusing nonlinear Schrödinger equation”, Phys. Rev. E, 101 (2020), 052207, 21 pp., arXiv: 1910.05732 | DOI | MR
[10] Flaschka H., Forest M.G., McLaughlin D.W., “Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation”, Comm. Pure Appl. Math., 33 (1980), 739–784 | DOI | MR | Zbl
[11] Forest M.G., Lee J.-E., “Geometry and modulation theory for the periodic nonlinear Schrödinger equation”, Oscillation Theory, Computation, and Methods of Compensated Compactness (Minneapolis, Minn.), IMA Vol. Math. Appl., 2, Springer, New York, 1985 | DOI | MR
[12] Gurevich A.V., Pitaevskii L.P., “Nonstationary structure of a collisionless shock wave”, Sov. Phys. JETP, 38 (1974), 291–297
[13] Kuijlaars A., Tovbis A., “On minimal energy solutions to certain classes of integral equations related to soliton gases for integrable systems”, Nonlinearity, 34 (2021), 7227–7254, arXiv: 2101.03964 | DOI | MR | Zbl
[14] Lax P.D., Levermore C.D., “The small dispersion limit of the Korteweg–de Vries equation. II”, Comm. Pure Appl. Math., 36 (1983), 571–593 | DOI | MR | Zbl
[15] Saff E.B., Totik V., Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer, Berlin, 1997 | DOI | MR | Zbl
[16] Tovbis A., Wang F., “Recent developments in spectral theory of the focusing NLS soliton and breather gases: the thermodynamic limit of average densities, fluxes and certain meromorphic differentials; periodic gases”, J. Phys. A, 55 (2022), 424006, 50 pp., arXiv: 2203.03566 | DOI | MR | Zbl
[17] Wadati M., Sanuki H., Konno K., “Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws”, Progr. Theoret. Phys., 53 (1975), 419–436 | DOI | MR | Zbl
[18] Zakharov V.E., “Kinetic equation for solitons”, Sov. Phys. JETP, 33 (1971), 538–541 | MR