@article{SIGMA_2024_20_a67,
author = {Hans Z. Munthe-Kaas and Jonatan Stava},
title = {Lie {Admissible} {Triple} {Algebras:} {The} {Connection} {Algebra} of {Symmetric} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a67/}
}
TY - JOUR AU - Hans Z. Munthe-Kaas AU - Jonatan Stava TI - Lie Admissible Triple Algebras: The Connection Algebra of Symmetric Spaces JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a67/ LA - en ID - SIGMA_2024_20_a67 ER -
Hans Z. Munthe-Kaas; Jonatan Stava. Lie Admissible Triple Algebras: The Connection Algebra of Symmetric Spaces. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a67/
[1] Al-Kaabi M.J.H., “Monomial bases for free pre-Lie algebras”, Sém. Lothar. Combin., 71 (2014), B71b, 19 pp., arXiv: 1309.4243 | MR | Zbl
[2] Bertram W., The geometry of Jordan and Lie structures, Lecture Notes in Math., 1754, Springer, Berlin, 2000 | DOI | MR | Zbl
[3] Besse A.L., Einstein manifolds, Classics Math., Springer, Berlin, 2008 | DOI | MR | Zbl
[4] Calaque D., Ebrahimi-Fard K., Manchon D., “Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series”, Adv. in Appl. Math., 47 (2011), 282–308, arXiv: 0806.2238 | DOI | MR | Zbl
[5] Chapoton F., Livernet M., “Pre-Lie algebras and the rooted trees operad”, Internat. Math. Res. Notices, 2001 (2001), 395–408, arXiv: math.QA/0002069 | DOI | MR | Zbl
[6] Chartier P., Hairer E., Vilmart G., “Algebraic structures of B-series”, Found. Comput. Math., 10 (2010), 407–427 | DOI | MR | Zbl
[7] Curry C., Ebrahimi-Fard K., Munthe-Kaas H., “What is a post-Lie algebra and why is it useful in geometric integration”, Numerical Mathematics and Advanced Applications – ENUMATH 2017, Lect. Notes Comput. Sci. Eng., 126, Springer, Cham, 2019, 429–437, arXiv: 1712.09415 | DOI | MR
[8] Dzhumadil'daev A., Löfwall C., “Trees, free right-symmetric algebras, free Novikov algebras and identities”, Homology Homotopy Appl., 4 (2002), 165–190 | DOI | MR | Zbl
[9] Ebrahimi-Fard K., Lundervold A., Munthe-Kaas H.Z., “On the Lie enveloping algebra of a post-Lie algebra”, J. Lie Theory, 25 (2015), 1139–1165, arXiv: 1410.6350 | MR | Zbl
[10] Gerstenhaber M., “The cohomology structure of an associative ring”, Ann. of Math., 78 (1963), 267–288 | DOI | MR | Zbl
[11] Golubchik I.Z., Sokolov V.V., “Generalized operator Yang–Baxter equations, integrable ODEs and nonassociative algebras”, J. Nonlinear Math. Phys., 7 (2000), 184–197, arXiv: nlin.SI/0003034 | DOI | MR | Zbl
[12] Grong E., Munthe-Kaas H.Z., Stava J., “Post-Lie algebra structure of manifolds with constant curvature and torsion”, J. Lie Theory, 34 (2024), 339–352, arXiv: 2305.02688 | MR
[13] Iserles A., Munthe-Kaas H.Z., Nørsett S.P., Zanna A., “Lie-group methods”, Acta Numerica, Acta Numer., 9, Cambridge University Press, Cambridge, 2000, 215–365 | DOI | MR
[14] Jacobson N., “General representation theory of Jordan algebras”, Trans. Amer. Math. Soc., 70 (1951), 509–530 | DOI | MR | Zbl
[15] Loos O., Symmetric spaces, v. I, General theory, W.A. Benjamin, New York, 1969 | MR | Zbl
[16] Munthe-Kaas H., “Lie–Butcher theory for Runge–Kutta methods”, BIT, 35 (1995), 572–587 | DOI | MR | Zbl
[17] Munthe-Kaas H., “Geometric integration on symmetric spaces”, J. Comput. Dyn., 11 (2024), 43–58, arXiv: 2308.16012 | DOI | MR | Zbl
[18] Munthe-Kaas H., Krogstad S., “On enumeration problems in Lie–Butcher theory”, Future Generation Comput. Syst., 19 (2003), 1197–1205 | DOI
[19] Munthe-Kaas H.Z., Lundervold A., “On post-Lie algebras, Lie–Butcher series and moving frames”, Found. Comput. Math., 13 (2013), 583–613, arXiv: 1203.4738 | DOI | MR | Zbl
[20] Munthe-Kaas H.Z., Stern A., Verdier O., “Invariant connections, Lie algebra actions, and foundations of numerical integration on manifolds”, SIAM J. Appl. Algebra Geom., 4 (2020), 49–68, arXiv: 1903.10056 | DOI | MR | Zbl
[21] Munthe-Kaas H.Z., Wright W.M., “On the Hopf algebraic structure of Lie group integrators”, Found. Comput. Math., 8 (2008), 227–257, arXiv: math.AC/0603023 | DOI | MR | Zbl
[22] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76 (1954), 33–65 | DOI | MR | Zbl
[23] Reutenauer C., Free Lie algebras, London Math. Soc. Monogr., 7, The Clarendon Press, Oxford University Press, New York, 1993 | MR
[24] Ricci M.M.G., Levi-Civita T., “Méthodes de calcul différentiel absolu et leurs applications”, Math. Ann., 54 (1900), 125–201 | DOI | MR
[25] Sokolov V., Algebraic structures related to integrable differential equations, Ensaios Mat., 31, Sociedade Brasileira de Matemática, Rio de Janeiro, 2017, arXiv: 1711.10613 | MR | Zbl
[26] Vallette B., “Homology of generalized partition posets”, J. Pure Appl. Algebra, 208 (2007), 699–725, arXiv: math.AT/0405312 | DOI | MR | Zbl
[27] Vinberg E., “The theory of homogeneous convex cones”, Trans. Mosc. Math. Soc., 12 (1963), 340–403 | MR | Zbl
[28] Yamaguti K., “On algebras of totally geodesic spaces (Lie triple systems)”, J. Sci. Hiroshima Univ. Ser. A, 21 (1957), 107–113 | DOI | MR | Zbl