Mots-clés : triaxial ellipsoid
@article{SIGMA_2024_20_a66,
author = {Hans Volkmer},
title = {The {Laplace{\textendash}Beltrami} {Operator} on the {Surface} of the {Ellipsoid}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a66/}
}
Hans Volkmer. The Laplace–Beltrami Operator on the Surface of the Ellipsoid. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a66/
[1] Arscott F., Periodic differential equations: an introduction to Mathieu, Lamé, and allied functions, Internat. Ser. Monogr. Pure Appl. Math., 66, Macmillan, New York, 1964 | MR
[2] Atkinson F., Mingarelli A.B., Multiparameter eigenvalue problems. Sturm–Liouville theory, CRC Press, Boca Raton, FL, 2011 | MR | Zbl
[3] Bailey P., Everett W., Zettl A., “Algorithm 810: The SLEIGN2 Sturm–Liouville Code”, ACM Trans. Math. Software, 27 (2001), 143–192 | DOI | MR | Zbl
[4] Binding P., Volkmer H., “Eigencurves for two-parameter Sturm–Liouville equations”, SIAM Rev., 38 (1996), 27–48 | DOI | MR | Zbl
[5] Borisov D., Freitas P., “On the spectrum of deformations of compact double-sided flat hypersurfaces”, Anal. PDE, 6 (2013), 1051–1088, arXiv: 1210.4088 | DOI | MR | Zbl
[6] Dassios G., Ellipsoidal harmonics: Theory and applications, Encyclopedia Math. Appl., 146, Cambridge University Press, Cambridge, 2012 | DOI | MR | Zbl
[7] Eller M., Karabash I.M., “M-dissipative boundary conditions and boundary tuples for Maxwell operators”, J. Differential Equations, 325 (2022), 82–118, arXiv: 2110.04586 | DOI | MR
[8] Erdélyi A., Higher transcendental functions, v. III, McGraw-Hill, New York, 1955 | Zbl
[9] Eswarathasan S., Kolokolnikov T., “Laplace–Beltrami spectrum of ellipsoids that are close to spheres and analytic perturbation theory”, IMA J. Appl. Math., 87 (2022), 20–49, arXiv: 2102.03579 | DOI | MR | Zbl
[10] Gimperlein H., Goffeng M., Louca N., “Semiclassical analysis of a nonlocal boundary value problem related to magnitude”, J. Anal. Math. (to appear) , arXiv: 2201.11357 | DOI
[11] Heine E., Handbuch der Kugelfunctionen, v. 1, G. Reimer Verlag, Berlin, 1878
[12] Hobson E.W., The theory of spherical and ellipsoidal harmonics, Chelsea Publishing Co., New York, 1955 | MR
[13] Ince E.L., “Further investigations into the periodic Lamé functions”, Proc. Roy. Soc. Edinburgh, 60 (1940), 83–99 | DOI | MR | Zbl
[14] Jost J., Riemannian geometry and geometric analysis, Universitext, 4th ed., Springer, Berlin, 2005 | DOI | MR | Zbl
[15] Kurula M., Zwart H., “Linear wave systems on $n$-{D} spatial domains”, Internat. J. Control, 88 (2015), 1063–1077, arXiv: 1405.1840 | DOI | MR | Zbl
[16] Lamé G., “Mémoire sur l'équilibre des températures dans un ellipsoïde à trois axes inégaux”, J. Math. Pures Appl., 4 (1839), 126–163
[17] Mangasuli A.G., Tiwari A., “Laplace eigenvalues of ellipsoids obtained as analytic perturbations of the unit sphere”, Ann. Global Anal. Geom., 63 (2023), 26, 10 pp. | DOI | MR | Zbl
[18] Mathieu E., “Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique”, J. Math. Pures Appl., 13 (1868), 137–208
[19] Meixner J., Schäfke F.W., Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf physikalische und technische Probleme, Grundlehren Math. Wiss., 71, Springer, Berlin, 1954 | MR
[20] Olver F.W.J., Asymptotics and special functions, A K Peters, New York, 1997 | DOI | MR | Zbl
[21] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (eds.), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[22] Volkmer H., Multiparameter eigenvalue problems and expansion theorems, Lecture Notes in Math., 1356, Springer, Berlin, 1988 | DOI | MR | Zbl
[23] Volkmer H., “Eigenvalues of the Laplace–Beltrami operator on a prolate spheroid”, J. Differential Equations, 373 (2023), 411–445 | DOI | MR | Zbl
[24] Walter W., Ordinary differential equations, Grad. Texts in Math., 182, Springer, New York, 1998 | DOI | MR | Zbl
[25] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl