The Laplace–Beltrami Operator on the Surface of the Ellipsoid
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Laplace–Beltrami operator on (the surface of) a triaxial ellipsoid admits a sequence of real eigenvalues diverging to plus infinity. By introducing ellipsoidal coordinates, this eigenvalue problem for a partial differential operator is reduced to a two-parameter regular Sturm–Liouville problem involving ordinary differential operators. This two-parameter eigenvalue problem has two families of eigencurves whose intersection points determine the eigenvalues of the Laplace–Beltrami operator. Eigenvalues are approximated numerically through eigenvalues of generalized matrix eigenvalue problems. Ellipsoids close to spheres are studied employing Lamé polynomials.
Keywords: Laplace–Beltrami operator, two-parameter Sturm–Liouville problem, generalized matrix eigenvalue problem, eigencurves.
Mots-clés : triaxial ellipsoid
@article{SIGMA_2024_20_a66,
     author = {Hans Volkmer},
     title = {The {Laplace{\textendash}Beltrami} {Operator} on the {Surface} of the {Ellipsoid}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a66/}
}
TY  - JOUR
AU  - Hans Volkmer
TI  - The Laplace–Beltrami Operator on the Surface of the Ellipsoid
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a66/
LA  - en
ID  - SIGMA_2024_20_a66
ER  - 
%0 Journal Article
%A Hans Volkmer
%T The Laplace–Beltrami Operator on the Surface of the Ellipsoid
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a66/
%G en
%F SIGMA_2024_20_a66
Hans Volkmer. The Laplace–Beltrami Operator on the Surface of the Ellipsoid. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a66/

[1] Arscott F., Periodic differential equations: an introduction to Mathieu, Lamé, and allied functions, Internat. Ser. Monogr. Pure Appl. Math., 66, Macmillan, New York, 1964 | MR

[2] Atkinson F., Mingarelli A.B., Multiparameter eigenvalue problems. Sturm–Liouville theory, CRC Press, Boca Raton, FL, 2011 | MR | Zbl

[3] Bailey P., Everett W., Zettl A., “Algorithm 810: The SLEIGN2 Sturm–Liouville Code”, ACM Trans. Math. Software, 27 (2001), 143–192 | DOI | MR | Zbl

[4] Binding P., Volkmer H., “Eigencurves for two-parameter Sturm–Liouville equations”, SIAM Rev., 38 (1996), 27–48 | DOI | MR | Zbl

[5] Borisov D., Freitas P., “On the spectrum of deformations of compact double-sided flat hypersurfaces”, Anal. PDE, 6 (2013), 1051–1088, arXiv: 1210.4088 | DOI | MR | Zbl

[6] Dassios G., Ellipsoidal harmonics: Theory and applications, Encyclopedia Math. Appl., 146, Cambridge University Press, Cambridge, 2012 | DOI | MR | Zbl

[7] Eller M., Karabash I.M., “M-dissipative boundary conditions and boundary tuples for Maxwell operators”, J. Differential Equations, 325 (2022), 82–118, arXiv: 2110.04586 | DOI | MR

[8] Erdélyi A., Higher transcendental functions, v. III, McGraw-Hill, New York, 1955 | Zbl

[9] Eswarathasan S., Kolokolnikov T., “Laplace–Beltrami spectrum of ellipsoids that are close to spheres and analytic perturbation theory”, IMA J. Appl. Math., 87 (2022), 20–49, arXiv: 2102.03579 | DOI | MR | Zbl

[10] Gimperlein H., Goffeng M., Louca N., “Semiclassical analysis of a nonlocal boundary value problem related to magnitude”, J. Anal. Math. (to appear) , arXiv: 2201.11357 | DOI

[11] Heine E., Handbuch der Kugelfunctionen, v. 1, G. Reimer Verlag, Berlin, 1878

[12] Hobson E.W., The theory of spherical and ellipsoidal harmonics, Chelsea Publishing Co., New York, 1955 | MR

[13] Ince E.L., “Further investigations into the periodic Lamé functions”, Proc. Roy. Soc. Edinburgh, 60 (1940), 83–99 | DOI | MR | Zbl

[14] Jost J., Riemannian geometry and geometric analysis, Universitext, 4th ed., Springer, Berlin, 2005 | DOI | MR | Zbl

[15] Kurula M., Zwart H., “Linear wave systems on $n$-{D} spatial domains”, Internat. J. Control, 88 (2015), 1063–1077, arXiv: 1405.1840 | DOI | MR | Zbl

[16] Lamé G., “Mémoire sur l'équilibre des températures dans un ellipsoïde à trois axes inégaux”, J. Math. Pures Appl., 4 (1839), 126–163

[17] Mangasuli A.G., Tiwari A., “Laplace eigenvalues of ellipsoids obtained as analytic perturbations of the unit sphere”, Ann. Global Anal. Geom., 63 (2023), 26, 10 pp. | DOI | MR | Zbl

[18] Mathieu E., “Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique”, J. Math. Pures Appl., 13 (1868), 137–208

[19] Meixner J., Schäfke F.W., Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf physikalische und technische Probleme, Grundlehren Math. Wiss., 71, Springer, Berlin, 1954 | MR

[20] Olver F.W.J., Asymptotics and special functions, A K Peters, New York, 1997 | DOI | MR | Zbl

[21] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (eds.), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[22] Volkmer H., Multiparameter eigenvalue problems and expansion theorems, Lecture Notes in Math., 1356, Springer, Berlin, 1988 | DOI | MR | Zbl

[23] Volkmer H., “Eigenvalues of the Laplace–Beltrami operator on a prolate spheroid”, J. Differential Equations, 373 (2023), 411–445 | DOI | MR | Zbl

[24] Walter W., Ordinary differential equations, Grad. Texts in Math., 182, Springer, New York, 1998 | DOI | MR | Zbl

[25] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl