Adiabatic Limit, Theta Function, and Geometric Quantization
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\pi\colon (M,\omega)\to B$ be a non-singular Lagrangian torus fibration on a complete base $B$ with prequantum line bundle $\bigl(L,\nabla^L\bigr)\to (M,\omega)$. Compactness on $M$ is not assumed. For a positive integer $N$ and a compatible almost complex structure $J$ on $(M,\omega)$ invariant along the fiber of $\pi$, let $D$ be the associated Spin${}^c$ Dirac operator with coefficients in $L^{\otimes N}$. First, in the case where $J$ is integrable, under certain technical condition on $J$, we give a complete orthogonal system $\{ \vartheta_b\}_{b\in B_{\rm BS}}$ of the space of holomorphic $L^2$-sections of $L^{\otimes N}$ indexed by the Bohr–Sommerfeld points $B_{\rm BS}$ such that each $\vartheta_b$ converges to a delta-function section supported on the corresponding Bohr–Sommerfeld fiber $\pi^{-1}(b)$ by the adiabatic(-type) limit. We also explain the relation of $\vartheta_b$ with Jacobi's theta functions when $(M,\omega)$ is $T^{2n}$. Second, in the case where $J$ is not integrable, we give an orthogonal family $\big\{\widetilde{\vartheta}_b\big\}_ {b\in B_{\rm BS}}$ of $L^2$-sections of $L^{\otimes N}$ indexed by $B_{\rm BS}$ which has the same property as above, and show that each $D{\widetilde \vartheta}_b$ converges to $0$ by the adiabatic(-type) limit with respect to the $L^2$-norm.
Keywords: theta function, Lagrangian fibration, geometric quantization.
Mots-clés : adiabatic limit
@article{SIGMA_2024_20_a64,
     author = {Takahiko Yoshida},
     title = {Adiabatic {Limit,} {Theta} {Function,} and {Geometric} {Quantization}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a64/}
}
TY  - JOUR
AU  - Takahiko Yoshida
TI  - Adiabatic Limit, Theta Function, and Geometric Quantization
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a64/
LA  - en
ID  - SIGMA_2024_20_a64
ER  - 
%0 Journal Article
%A Takahiko Yoshida
%T Adiabatic Limit, Theta Function, and Geometric Quantization
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a64/
%G en
%F SIGMA_2024_20_a64
Takahiko Yoshida. Adiabatic Limit, Theta Function, and Geometric Quantization. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a64/

[1] Andersen J.E., “Geometric quantization of symplectic manifolds with respect to reducible non-negative polarizations”, Comm. Math. Phys., 183 (1997), 401–421 | DOI | MR | Zbl

[2] Arnold V.I., Mathematical methods of classical mechanics, Grad. Texts Math., 60, 2nd ed., Springer, New York, 1989 | DOI | MR

[3] Baier T., Florentino C., Mourão J.M., Nunes J.P., “Toric Kähler metrics seen from infinity, quantization and compact tropical amoebas”, J. Differential Geom., 89 (2011), 411–454, arXiv: 0806.0606 | DOI | MR | Zbl

[4] Baier T., Mourão J.M., Nunes J.P., “Quantization of abelian varieties: distributional sections and the transition from Kähler to real polarizations”, J. Funct. Anal., 258 (2010), 3388–3412, arXiv: 0907.5324 | DOI | MR | Zbl

[5] Bieberbach L., “Über die {B}ewegungsgruppen der Euklidischen Räume”, Math. Ann., 70 (1911), 297–336 | DOI | MR

[6] Bieberbach L., “Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich”, Math. Ann., 72 (1912), 400–412 | DOI | MR

[7] Borthwick D., Uribe A., “Almost complex structures and geometric quantization”, Math. Res. Lett., 3 (1996), 845–861, arXiv: dg-ga/9608006 | DOI | MR | Zbl

[8] Bott R., Tu L.W., Differential forms in algebraic topology, Grad. Texts Math., 82, Springer, New York, 1982 | DOI | MR | Zbl

[9] Danilov V.I., “The geometry of toric varieties”, Russian Math. Surveys, 33 (1978), 97–154 | DOI | MR | Zbl

[10] Duistermaat J.J., “On global action-angle coordinates”, Comm. Pure Appl. Math., 33 (1980), 687–706 | DOI | MR | Zbl

[11] Duistermaat J.J., The heat kernel Lefschetz fixed point formula for the spin-$c$ Dirac operator, Progr. Nonlinear Differential Equations Appl., 18, Birkhäuser, Boston, MA, 1996 | DOI | MR | Zbl

[12] Egorov D.V., “Theta functions on $T^2$-bundles over $T^2$ with the zero Euler class”, Sib. Math. J., 50 (2009), 647–657, arXiv: 1110.2322 | DOI | MR | Zbl

[13] Egorov D.V., “Theta functions on the Kodaira–Thurston manifold”, Sib. Math. J., 50 (2009), 253–260, arXiv: 0902.2843 | DOI | MR | Zbl

[14] Fujita H., Furuta M., Yoshida T., “Torus fibrations and localization of index I”, J. Math. Sci. Univ. Tokyo, 17 (2010), 1–26, arXiv: 0804.3258 | MR | Zbl

[15] Fujita H., Furuta M., Yoshida T., “Torus fibrations and localization of index II: local index for acyclic compatible system”, Comm. Math. Phys., 326 (2014), 585–633, arXiv: 0910.0358 | DOI | MR | Zbl

[16] Goldman W., Hirsch M.W., “The radiance obstruction and parallel forms on affine manifolds”, Trans. Amer. Math. Soc., 286 (1984), 629–649 | DOI | MR | Zbl

[17] Guillemin V., Sternberg S., “The Gelfand–Cetlin system and quantization of the complex flag manifolds”, J. Funct. Anal., 52 (1983), 106–128 | DOI | MR | Zbl

[18] Hall B.C., “Geometric quantization and the generalized Segal–Bargmann transform for Lie groups of compact type”, Comm. Math. Phys., 226 (2002), 233–268, arXiv: quant-ph/0012105 | DOI | MR | Zbl

[19] Hall B.C., Quantum theory for mathematicians, Grad. Texts Math., 267, Springer, New York, 2013 | DOI | MR | Zbl

[20] Hamilton M.D., Harada M., Kaveh K., “Convergence of polarizations, toric degenerations, and Newton–Okounkov bodies”, Comm. Anal. Geom., 29 (2021), 1183–1231, arXiv: 1612.08981v2 | DOI | MR | Zbl

[21] Hamilton M.D., Konno H., “Convergence of Kähler to real polarizations on flag manifolds via toric degenerations”, J. Symplectic Geom., 12 (2014), 473–509, arXiv: 1105.0741 | DOI | MR | Zbl

[22] Jeffrey L.C., Weitsman J., “Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula”, Comm. Math. Phys., 150 (1992), 593–630 | DOI | MR | Zbl

[23] Kamiyama Y., “The cohomology of spatial polygon spaces with anticanonical sheaf”, Int. J. Appl. Math., 3 (2000), 339–343 | MR | Zbl

[24] Kirillov A.A., “Geometric quantization”, Dynamical Systems, IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 2001, 139–176 | DOI | MR

[25] Kirwin W.D., Uribe A., “Theta functions on the Kodaira–Thurston manifold”, Trans. Amer. Math. Soc., 362 (2010), 897–932, arXiv: 0712.4016 | DOI | MR | Zbl

[26] Kodaira K., “On the structure of compact complex analytic surfaces. I”, Amer. J. Math., 86 (1964), 751–798 | DOI | MR | Zbl

[27] Kostant B., “Quantization and unitary representations”, Lectures in Modern Analysis and Applications, v. III, Lecture Notes in Math., 170, Springer, Berlin, 1970, 87–208 | DOI | MR

[28] Kubota Y., “The joint spectral flow and localization of the indices of elliptic operators”, Ann. K-Theory, 1 (2016), 43–83, arXiv: 1410.5569 | DOI | MR | Zbl

[29] Lascoux A., Berger M., Variétés Kähleriennes compactes, Lecture Notes in Math., 154, Springer, Berlin, 1970 | DOI | MR

[30] Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[31] Mishachev K.N., “The classification of Lagrangian bundles over surfaces”, Differential Geom. Appl., 6 (1996), 301–320 | DOI | MR | Zbl

[32] Mumford D., Tata lectures on theta. I, Mod. Birkhäuser Class., Birkhäuser, Boston, MA, 2007 | DOI | MR | Zbl

[33] Mumford D., Tata lectures on theta, v. III, Mod. Birkhäuser Class., Birkhäuser, Boston, MA, 2007 | MR

[34] Nohara Y., “Projective embeddings and Lagrangian fibrations of abelian varieties”, Math. Ann., 333 (2005), 741–757 | DOI | MR | Zbl

[35] Nohara Y., “Projective embeddings and Lagrangian fibrations of Kummer varieties”, Internat. J. Math., 20 (2009), 557–572, arXiv: math.DG/0604329 | DOI | MR | Zbl

[36] Sepe D., “Topological classification of Lagrangian fibrations”, J. Geom. Phys., 60 (2010), 341–351, arXiv: 0910.5450 | DOI | MR | Zbl

[37] Śniatycki J., Geometric quantization and quantum mechanics, Appl. Math. Sci., 30, Springer, New York, 1980 | DOI | MR | Zbl

[38] Souriau J.-M., “Quantification géométrique”, Comm. Math. Phys., 1 (1966), 374–398 | MR | Zbl

[39] Souriau J.-M., Structure of dynamical systems, Progr. Math., 149, Birkhäuser, Boston, MA, 1997 | MR | Zbl

[40] Symington M., “Four dimensions from two in symplectic topology”, Topology and Geometry of Manifolds, Proc. Sympos. Pure Math., 71, American Mathematical Society, Providence, RI, 2003, 153–208, arXiv: math.SG/0210033 | DOI | MR | Zbl

[41] Thurston W.P., “Some simple examples of symplectic manifolds”, Proc. Amer. Math. Soc., 55 (1976), 467–468 | DOI | MR | Zbl

[42] Wolf J.A., Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011 | DOI | MR | Zbl

[43] Woodhouse N.M.J., Geometric quantization, Oxford Math. Monogr., 2nd ed., The Clarendon Press, Oxford University Press, New York, 1992 | MR

[44] Yoshida T., “Local torus actions modeled on the standard representation”, Adv. Math., 227 (2011), 1914–1955, arXiv: 0710.2166 | DOI | MR | Zbl