Identity between Restricted Cauchy Sums for the $q$-Whittaker and Skew Schur Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy identities play an important role in the theory of symmetric functions. It is known that Cauchy sums for the $q$-Whittaker and the skew Schur polynomials produce the same factorized expressions modulo a $q$-Pochhammer symbol. We consider the sums with restrictions on the length of the first rows for labels of both polynomials and prove an identity which relates them. The proof is based on techniques from integrable probability: we rewrite the identity in terms of two probability measures: the $q$-Whittaker measure and the periodic Schur measure. The relation follows by comparing their Fredholm determinant formulas.
Keywords: integrable probability, Kardar–Parisi–Zhang class, stochastic processes, Macdonald polynomials.
@article{SIGMA_2024_20_a63,
     author = {Takashi Imamura and Matteo Mucciconi and Tomohiro Sasamoto},
     title = {Identity between {Restricted} {Cauchy} {Sums} for the $q${-Whittaker} and {Skew} {Schur} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a63/}
}
TY  - JOUR
AU  - Takashi Imamura
AU  - Matteo Mucciconi
AU  - Tomohiro Sasamoto
TI  - Identity between Restricted Cauchy Sums for the $q$-Whittaker and Skew Schur Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a63/
LA  - en
ID  - SIGMA_2024_20_a63
ER  - 
%0 Journal Article
%A Takashi Imamura
%A Matteo Mucciconi
%A Tomohiro Sasamoto
%T Identity between Restricted Cauchy Sums for the $q$-Whittaker and Skew Schur Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a63/
%G en
%F SIGMA_2024_20_a63
Takashi Imamura; Matteo Mucciconi; Tomohiro Sasamoto. Identity between Restricted Cauchy Sums for the $q$-Whittaker and Skew Schur Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a63/

[1] Aggarwal A., “Correlation functions of the Schur process through Macdonald difference operators”, J. Combin. Theory Ser. A, 131 (2015), 88–118, arXiv: 1401.6979 | DOI | MR | Zbl

[2] Ahn A., Russkikh M., Van Peski R., “Lozenge tilings and the Gaussian free field on a cylinder”, Comm. Math. Phys., 396 (2022), 1221–1275, arXiv: 2105.00551 | DOI | MR

[3] Amir G., Corwin I., Quastel J., “Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions”, Comm. Pure Appl. Math., 64 (2011), 466–537, arXiv: 1003.0443 | DOI | MR | Zbl

[4] Andrews G.E., Askey R., Roy R., Special functions, Encycl. Math. Appl., 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[5] Baik J., Rains E.M., “Algebraic aspects of increasing subsequences”, Duke Math. J., 109 (2001), 1–65, arXiv: math.CO/9905083 | DOI | MR | Zbl

[6] Betea D., Bouttier J., “The periodic Schur process and free fermions at finite temperature”, Math. Phys. Anal. Geom., 22 (2019), 3, 47 pp., arXiv: 1807.09022 | DOI | MR | Zbl

[7] Betea D., Bouttier J., Nejjar P., Vuletić M., “The free boundary Schur process and applications I”, Ann. Henri Poincaré, 19 (2018), 3663–3742, arXiv: 1704.05809 | DOI | MR | Zbl

[8] Borodin A., “Periodic Schur process and cylindric partitions”, Duke Math. J., 140 (2007), 391–468, arXiv: math.CO/0601019 | DOI | MR | Zbl

[9] Borodin A., “Stochastic higher spin six vertex model and Macdonald measures”, J. Math. Phys., 59 (2018), 023301, 17 pp., arXiv: 1608.01553 | DOI | MR | Zbl

[10] Borodin A., Bufetov A., Wheeler M., “Between the stochastic six vertex model and hall-littlewood processes”, J. Combin. Theory Ser. A (to appear) , arXiv: 1611.094863

[11] Borodin A., Corwin I., “Macdonald processes”, Probab. Theory Related Fields, 158 (2014), 225–400, arXiv: 1111.4408 | DOI | MR | Zbl

[12] Borodin A., Corwin I., Ferrari P., Vető B., “Height fluctuations for the stationary KPZ equation”, Math. Phys. Anal. Geom., 18 (2015), 20, 95 pp., arXiv: 1407.6977 | DOI | MR | Zbl

[13] Borodin A., Corwin I., Sasamoto T., “From duality to determinants for $q$-TASEP and ASEP”, Ann. Probab., 42 (2014), 2314–2382, arXiv: 1207.5035 | DOI | MR | Zbl

[14] Borodin A., Ferrari P.L., “Large time asymptotics of growth models on space-like paths. I PushASEP”, Electron. J. Probab., 13 (2008), 1380–1418, arXiv: 0707.2813 | DOI | MR | Zbl

[15] Borodin A., Gorin V., “Lectures on integrable probability”, Probability and Statistical Physics in St. Petersburg, Proc. Sympos. Pure Math., 91, American Mathematical Society, Providence, RI, 2016, 155–214, arXiv: 1212.3351 | MR | Zbl

[16] Borodin A., Gorin V., “Moments match between the KPZ equation and the Airy point process”, SIGMA, 12 (2016), 102, 7 pp., arXiv: 1608.01557 | DOI | MR | Zbl

[17] Borodin A., Olshanski G., “The ASEP and determinantal point processes”, Comm. Math. Phys., 353 (2017), 853–903, arXiv: 1608.01564 | DOI | MR | Zbl

[18] Borodin A., Petrov L., “Nearest neighbor Markov dynamics on Macdonald processes”, Adv. Math., 300 (2016), 71–155, arXiv: 1305.5501 | DOI | MR | Zbl

[19] Bufetov A., Mucciconi M., Petrov L., “Yang–Baxter random fields and stochastic vertex models”, Adv. Math., 388 (2021), 107865, 94 pp., arXiv: 1905.06815 | DOI | MR | Zbl

[20] Bump D., Lie groups, Grad. Texts Math., 225, 2nd ed., Springer, New York, 2013 | DOI | MR | Zbl

[21] Calabrese P., Le Doussal P., Rosso A., “Free-energy distribution of the directed polymer at high temperature”, Europhys. Lett., 90 (2010), 20002, 7 pp., arXiv: 1002.4560 | DOI

[22] Dean D., Le Doussal P., Majumdar S., Schehr G., “Finite-temperature free fermions and the Kardar–Parisi–Zhang equation at finite time”, Phys. Rev. Lett., 114 (2015), 110402, 6 pp., arXiv: 1412.1590 | DOI

[23] Dotsenko V., “Bethe ansatz derivation of the Tracy–Widom distribution for one-dimensional directed polymers”, Europhys. Lett., 90 (2010), 20003, 6 pp., arXiv: 1003.4899 | DOI | MR

[24] Gessel I.M., “Symmetric functions and P-recursiveness”, J. Combin. Theory Ser. A, 53 (1990), 257–285 | DOI | MR | Zbl

[25] Imamura T., Mucciconi M., Sasamoto T., “Skew RSK dynamics: Greene invariants, affine crystals and applications to $q$-Whittaker polynomials”, Forum Math. Pi, 11 (2023), e27, 101 pp., arXiv: 2106.11922 | DOI | MR | Zbl

[26] Imamura T., Sasamoto T., “Fluctuations for stationary $q$-TASEP”, Probab. Theory Related Fields, 174 (2019), 647–730, arXiv: 1701.05991 | DOI | MR | Zbl

[27] Johansson K., “Shape fluctuations and random matrices”, Comm. Math. Phys., 209 (2000), 437–476, arXiv: math.CO/9903134 | DOI | MR | Zbl

[28] Johansson K., “From Gumbel to Tracy–Widom”, Probab. Theory Related Fields, 138 (2007), 75–112, arXiv: math/0510181 | DOI | MR | Zbl

[29] Koshida S., “Free field theory and observables of periodic Macdonald processes”, J. Combin. Theory Ser. A, 182 (2021), 105473, 42 pp., arXiv: 2001.04607 | DOI | MR | Zbl

[30] Liechty K., Wang D., “Asymptotics of free fermions in a quadratic well at finite temperature and the Moshe–Neuberger–Shapiro random matrix model”, Ann. Inst. Henri Poincaré Probab. Stat., 56 (2020), 1072–1098, arXiv: 1706.06653 | DOI | MR | Zbl

[31] Macdonald I.G., Symmetric functions and Hall polynomials, Oxf. Class. Texts Phys. Sci., 2nd ed., The Clarendon Press, New York, 2015 | MR | Zbl

[32] Matveev K., Petrov L., “$q$-randomized Robinson–Schensted–Knuth correspondences and random polymers”, Ann. Inst. Henri Poincaré D, 4 (2017), 1–123, arXiv: 1504.00666 | DOI | MR | Zbl

[33] Mucciconi M., Petrov L., “Spin $q$-Whittaker polynomials and deformed quantum Toda”, Comm. Math. Phys., 389 (2022), 1331–1416, arXiv: 2003.14260 | DOI | MR | Zbl

[34] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7 (2001), 57–81, arXiv: math.RT/9907127 | DOI | MR | Zbl

[35] Rains E.M., “Increasing subsequences and the classical groups”, Electron. J. Combin., 5 (1998), 12, 9 pp. | DOI | MR

[36] Rains E.M., Warnaar S.O., Bounded Littlewood identities, Mem. Amer. Math. Soc., 270, 2021, vii+115 pp., arXiv: 1506.02755 | DOI | MR

[37] Sagan B.E., The symmetric group: representations, combinatorial algorithms, and symmetric functions, Grad. Texts Math., 203, 2nd ed., Springer, New York, 2001 | DOI | MR | Zbl

[38] Sasamoto T., Spohn H., “Exact height distributions for the KPZ equation with narrow wedge initial condition”, Nuclear Phys. B, 834 (2010), 523–542, arXiv: 1002.1879 | DOI | MR | Zbl

[39] Sasamoto T., Spohn H., “One-dimensional Kardar–Parisi–Zhang equation: an exact solution and its universality”, Phys. Rev. Lett., 104 (2010), 230602, 4 pp., arXiv: 1002.1883 | DOI | MR

[40] Soshnikov A., “Determinantal random point fields”, Russian Math. Surveys, 55 (2000), 923–975, arXiv: math.PR/0002099 | DOI | MR | Zbl

[41] Warren J., Windridge P., “Some examples of dynamics for Gelfand–Tsetlin patterns”, Electron. J. Probab., 14 (2009), 1745–1769, arXiv: 0812.0022 | DOI | MR | Zbl