@article{SIGMA_2024_20_a63,
author = {Takashi Imamura and Matteo Mucciconi and Tomohiro Sasamoto},
title = {Identity between {Restricted} {Cauchy} {Sums} for the $q${-Whittaker} and {Skew} {Schur} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a63/}
}
TY - JOUR AU - Takashi Imamura AU - Matteo Mucciconi AU - Tomohiro Sasamoto TI - Identity between Restricted Cauchy Sums for the $q$-Whittaker and Skew Schur Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a63/ LA - en ID - SIGMA_2024_20_a63 ER -
%0 Journal Article %A Takashi Imamura %A Matteo Mucciconi %A Tomohiro Sasamoto %T Identity between Restricted Cauchy Sums for the $q$-Whittaker and Skew Schur Polynomials %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a63/ %G en %F SIGMA_2024_20_a63
Takashi Imamura; Matteo Mucciconi; Tomohiro Sasamoto. Identity between Restricted Cauchy Sums for the $q$-Whittaker and Skew Schur Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a63/
[1] Aggarwal A., “Correlation functions of the Schur process through Macdonald difference operators”, J. Combin. Theory Ser. A, 131 (2015), 88–118, arXiv: 1401.6979 | DOI | MR | Zbl
[2] Ahn A., Russkikh M., Van Peski R., “Lozenge tilings and the Gaussian free field on a cylinder”, Comm. Math. Phys., 396 (2022), 1221–1275, arXiv: 2105.00551 | DOI | MR
[3] Amir G., Corwin I., Quastel J., “Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions”, Comm. Pure Appl. Math., 64 (2011), 466–537, arXiv: 1003.0443 | DOI | MR | Zbl
[4] Andrews G.E., Askey R., Roy R., Special functions, Encycl. Math. Appl., 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[5] Baik J., Rains E.M., “Algebraic aspects of increasing subsequences”, Duke Math. J., 109 (2001), 1–65, arXiv: math.CO/9905083 | DOI | MR | Zbl
[6] Betea D., Bouttier J., “The periodic Schur process and free fermions at finite temperature”, Math. Phys. Anal. Geom., 22 (2019), 3, 47 pp., arXiv: 1807.09022 | DOI | MR | Zbl
[7] Betea D., Bouttier J., Nejjar P., Vuletić M., “The free boundary Schur process and applications I”, Ann. Henri Poincaré, 19 (2018), 3663–3742, arXiv: 1704.05809 | DOI | MR | Zbl
[8] Borodin A., “Periodic Schur process and cylindric partitions”, Duke Math. J., 140 (2007), 391–468, arXiv: math.CO/0601019 | DOI | MR | Zbl
[9] Borodin A., “Stochastic higher spin six vertex model and Macdonald measures”, J. Math. Phys., 59 (2018), 023301, 17 pp., arXiv: 1608.01553 | DOI | MR | Zbl
[10] Borodin A., Bufetov A., Wheeler M., “Between the stochastic six vertex model and hall-littlewood processes”, J. Combin. Theory Ser. A (to appear) , arXiv: 1611.094863
[11] Borodin A., Corwin I., “Macdonald processes”, Probab. Theory Related Fields, 158 (2014), 225–400, arXiv: 1111.4408 | DOI | MR | Zbl
[12] Borodin A., Corwin I., Ferrari P., Vető B., “Height fluctuations for the stationary KPZ equation”, Math. Phys. Anal. Geom., 18 (2015), 20, 95 pp., arXiv: 1407.6977 | DOI | MR | Zbl
[13] Borodin A., Corwin I., Sasamoto T., “From duality to determinants for $q$-TASEP and ASEP”, Ann. Probab., 42 (2014), 2314–2382, arXiv: 1207.5035 | DOI | MR | Zbl
[14] Borodin A., Ferrari P.L., “Large time asymptotics of growth models on space-like paths. I PushASEP”, Electron. J. Probab., 13 (2008), 1380–1418, arXiv: 0707.2813 | DOI | MR | Zbl
[15] Borodin A., Gorin V., “Lectures on integrable probability”, Probability and Statistical Physics in St. Petersburg, Proc. Sympos. Pure Math., 91, American Mathematical Society, Providence, RI, 2016, 155–214, arXiv: 1212.3351 | MR | Zbl
[16] Borodin A., Gorin V., “Moments match between the KPZ equation and the Airy point process”, SIGMA, 12 (2016), 102, 7 pp., arXiv: 1608.01557 | DOI | MR | Zbl
[17] Borodin A., Olshanski G., “The ASEP and determinantal point processes”, Comm. Math. Phys., 353 (2017), 853–903, arXiv: 1608.01564 | DOI | MR | Zbl
[18] Borodin A., Petrov L., “Nearest neighbor Markov dynamics on Macdonald processes”, Adv. Math., 300 (2016), 71–155, arXiv: 1305.5501 | DOI | MR | Zbl
[19] Bufetov A., Mucciconi M., Petrov L., “Yang–Baxter random fields and stochastic vertex models”, Adv. Math., 388 (2021), 107865, 94 pp., arXiv: 1905.06815 | DOI | MR | Zbl
[20] Bump D., Lie groups, Grad. Texts Math., 225, 2nd ed., Springer, New York, 2013 | DOI | MR | Zbl
[21] Calabrese P., Le Doussal P., Rosso A., “Free-energy distribution of the directed polymer at high temperature”, Europhys. Lett., 90 (2010), 20002, 7 pp., arXiv: 1002.4560 | DOI
[22] Dean D., Le Doussal P., Majumdar S., Schehr G., “Finite-temperature free fermions and the Kardar–Parisi–Zhang equation at finite time”, Phys. Rev. Lett., 114 (2015), 110402, 6 pp., arXiv: 1412.1590 | DOI
[23] Dotsenko V., “Bethe ansatz derivation of the Tracy–Widom distribution for one-dimensional directed polymers”, Europhys. Lett., 90 (2010), 20003, 6 pp., arXiv: 1003.4899 | DOI | MR
[24] Gessel I.M., “Symmetric functions and P-recursiveness”, J. Combin. Theory Ser. A, 53 (1990), 257–285 | DOI | MR | Zbl
[25] Imamura T., Mucciconi M., Sasamoto T., “Skew RSK dynamics: Greene invariants, affine crystals and applications to $q$-Whittaker polynomials”, Forum Math. Pi, 11 (2023), e27, 101 pp., arXiv: 2106.11922 | DOI | MR | Zbl
[26] Imamura T., Sasamoto T., “Fluctuations for stationary $q$-TASEP”, Probab. Theory Related Fields, 174 (2019), 647–730, arXiv: 1701.05991 | DOI | MR | Zbl
[27] Johansson K., “Shape fluctuations and random matrices”, Comm. Math. Phys., 209 (2000), 437–476, arXiv: math.CO/9903134 | DOI | MR | Zbl
[28] Johansson K., “From Gumbel to Tracy–Widom”, Probab. Theory Related Fields, 138 (2007), 75–112, arXiv: math/0510181 | DOI | MR | Zbl
[29] Koshida S., “Free field theory and observables of periodic Macdonald processes”, J. Combin. Theory Ser. A, 182 (2021), 105473, 42 pp., arXiv: 2001.04607 | DOI | MR | Zbl
[30] Liechty K., Wang D., “Asymptotics of free fermions in a quadratic well at finite temperature and the Moshe–Neuberger–Shapiro random matrix model”, Ann. Inst. Henri Poincaré Probab. Stat., 56 (2020), 1072–1098, arXiv: 1706.06653 | DOI | MR | Zbl
[31] Macdonald I.G., Symmetric functions and Hall polynomials, Oxf. Class. Texts Phys. Sci., 2nd ed., The Clarendon Press, New York, 2015 | MR | Zbl
[32] Matveev K., Petrov L., “$q$-randomized Robinson–Schensted–Knuth correspondences and random polymers”, Ann. Inst. Henri Poincaré D, 4 (2017), 1–123, arXiv: 1504.00666 | DOI | MR | Zbl
[33] Mucciconi M., Petrov L., “Spin $q$-Whittaker polynomials and deformed quantum Toda”, Comm. Math. Phys., 389 (2022), 1331–1416, arXiv: 2003.14260 | DOI | MR | Zbl
[34] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7 (2001), 57–81, arXiv: math.RT/9907127 | DOI | MR | Zbl
[35] Rains E.M., “Increasing subsequences and the classical groups”, Electron. J. Combin., 5 (1998), 12, 9 pp. | DOI | MR
[36] Rains E.M., Warnaar S.O., Bounded Littlewood identities, Mem. Amer. Math. Soc., 270, 2021, vii+115 pp., arXiv: 1506.02755 | DOI | MR
[37] Sagan B.E., The symmetric group: representations, combinatorial algorithms, and symmetric functions, Grad. Texts Math., 203, 2nd ed., Springer, New York, 2001 | DOI | MR | Zbl
[38] Sasamoto T., Spohn H., “Exact height distributions for the KPZ equation with narrow wedge initial condition”, Nuclear Phys. B, 834 (2010), 523–542, arXiv: 1002.1879 | DOI | MR | Zbl
[39] Sasamoto T., Spohn H., “One-dimensional Kardar–Parisi–Zhang equation: an exact solution and its universality”, Phys. Rev. Lett., 104 (2010), 230602, 4 pp., arXiv: 1002.1883 | DOI | MR
[40] Soshnikov A., “Determinantal random point fields”, Russian Math. Surveys, 55 (2000), 923–975, arXiv: math.PR/0002099 | DOI | MR | Zbl
[41] Warren J., Windridge P., “Some examples of dynamics for Gelfand–Tsetlin patterns”, Electron. J. Probab., 14 (2009), 1745–1769, arXiv: 0812.0022 | DOI | MR | Zbl