Reduction of $L_\infty$-Algebras of Observables on Multisymplectic Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a reduction scheme for the $L_\infty$-algebra of observables on a premultisymplectic manifold $(M,\omega)$ in the presence of a compatible Lie algebra action $\mathfrak{g}\curvearrowright M$ and subset $N\subset M$. This reproduces in the symplectic setting the Poisson algebra of observables on the Marsden–Weinstein–Meyer symplectic reduced space, whenever the reduced space exists, but is otherwise distinct from the Dirac, Śniatycki–Weinstein, and Arms–Cushman–Gotay observable reduction schemes. We examine various examples, including multicotangent bundles and multiphase spaces, and we conclude with a discussion of applications to classical field theories and quantization.
Keywords: $L_\infty$-algebras, multisymplectic manifolds, moment maps.
@article{SIGMA_2024_20_a60,
     author = {Casey Blacker and Antonio Michele Miti and Leonid Ryvkin},
     title = {Reduction of $L_\infty${-Algebras} of {Observables} on {Multisymplectic} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a60/}
}
TY  - JOUR
AU  - Casey Blacker
AU  - Antonio Michele Miti
AU  - Leonid Ryvkin
TI  - Reduction of $L_\infty$-Algebras of Observables on Multisymplectic Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a60/
LA  - en
ID  - SIGMA_2024_20_a60
ER  - 
%0 Journal Article
%A Casey Blacker
%A Antonio Michele Miti
%A Leonid Ryvkin
%T Reduction of $L_\infty$-Algebras of Observables on Multisymplectic Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a60/
%G en
%F SIGMA_2024_20_a60
Casey Blacker; Antonio Michele Miti; Leonid Ryvkin. Reduction of $L_\infty$-Algebras of Observables on Multisymplectic Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a60/

[1] Abraham R., Marsden J., Foundations of mechanics, 2nd ed., Benjamin, Reading, MA, 1978 | MR | Zbl

[2] Albert C., “Le théorème de réduction de Marsden–Weinstein en géométrie cosymplectique et de contact”, J. Geom. Phys., 6 (1989), 627–649 | DOI | MR | Zbl

[3] Alekseev A., Malkin A., Meinrenken E., “Lie group valued moment maps”, J. Differential Geom., 48 (1998), 445–495, arXiv: dg-ga/9707021 | DOI | MR | Zbl

[4] Arms J.M., “Reduction of Poisson algebras at nonzero momentum values”, J. Geom. Phys., 21 (1996), 81–95 | DOI | MR | Zbl

[5] Arms J.M., Cushman R.H., Gotay M.J., “A universal reduction procedure for Hamiltonian group actions”, The Geometry of Hamiltonian Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 22, Springer, New York, 1991, 33–51 | DOI | MR

[6] Arms J.M., Gotay M.J., Jennings G., “Geometric and algebraic reduction for singular momentum maps”, Adv. Math., 79 (1990), 43–103 | DOI | MR | Zbl

[7] Atiyah M.F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl

[8] Baez J.C., Hoffnung A.E., Rogers C.L., “Categorified symplectic geometry and the classical string”, Comm. Math. Phys., 293 (2010), 701–725, arXiv: 0808.0246 | DOI | MR | Zbl

[9] Barnich G., Fulp R., Lada T., Stasheff J., “The sh Lie structure of Poisson brackets in field theory”, Comm. Math. Phys., 191 (1998), 585–601, arXiv: hep-th/9702176 | DOI | MR | Zbl

[10] Barron T., Serajelahi B., “Berezin–Toeplitz quantization, hyperkähler manifolds, and multisymplectic manifolds”, Glasg. Math. J., 59 (2017), 167–187, arXiv: 1406.5159 | DOI | MR | Zbl

[11] Barron T., Shafiee M., “Multisymplectic structures induced by symplectic structures”, J. Geom. Phys., 136 (2019), 1–13 | DOI | MR | Zbl

[12] Blacker C., “Reduction of multisymplectic manifolds”, Lett. Math. Phys., 111 (2021), 64, 30 pp., arXiv: 2002.10062 | DOI | MR | Zbl

[13] Bursztyn H., Cavalcanti G.R., Gualtieri M., “Reduction of Courant algebroids and generalized complex structures”, Adv. Math., 211 (2007), 726–765, arXiv: math.DG/0509640 | DOI | MR | Zbl

[14] Bursztyn H., Martinez Alba N., Rubio R., “On higher Dirac structures”, Int. Math. Res. Not., 2019 (2019), 1503–1542, arXiv: 1611.02292 | DOI | MR | Zbl

[15] Callies M., Frégier Y., Rogers C.L., Zambon M., “Homotopy moment maps”, Adv. Math., 303 (2016), 954–1043, arXiv: 1304.2051 | DOI | MR | Zbl

[16] Cantrijn F., Ibort A., de León M., “On the geometry of multisymplectic manifolds”, J. Aust. Math. Soc., 66 (1999), 303–330 | DOI | MR | Zbl

[17] Cendra H., Marsden J.E., Ratiu T.S., “Geometric mechanics, lagrangian reduction, and nonholonomic systems”, Mathematics Unlimited – 2001 and Beyond, Springer, Berlin, 2001, 221–273 | DOI | MR | Zbl

[18] Cushman R., Śniatycki J., “Differential structure of orbit spaces”, Canad. J. Math., 53 (2001), 715–755 | DOI | MR

[19] da Silva A.C., Lectures on symplectic geometry, Lecture Notes in Math., 1764, Springer, Berlin, 2008 | DOI | MR

[20] de León M., Lainz Valcázar M., “Contact Hamiltonian systems”, J. Math. Phys., 60 (2019), 102902, 18 pp., arXiv: 1811.03367 | DOI | MR | Zbl

[21] de Lucas J., Gràcia X., Rivas X., Román-Roy N., Vilariño S., “Reduction and reconstruction of multisymplectic Lie systems”, J. Phys. A, 55 (2022), 295204, 34 pp., arXiv: 2202.13748 | DOI | MR | Zbl

[22] DeBellis J., Sämann C., Szabo R.J., “Quantized Nambu–Poisson manifolds and $n$-Lie algebras”, J. Math. Phys., 51 (2010), 122303, 34 pp., arXiv: 1001.3275 | DOI | MR | Zbl

[23] DeBellis J., Sämann C., Szabo R.J., “Quantized Nambu–Poisson manifolds in a 3-Lie algebra reduced model”, J. High Energy Phys., 2011:4 (2011), 075, 23 pp., arXiv: 1012.2236 | DOI | MR | Zbl

[24] Dehling M., On weak Lie 3-algebras, arXiv: 1710.11104

[25] Dippell M., Esposito C., Waldmann S., “Coisotropic triples, reduction and classical limit”, Doc. Math., 24 (2019), 1811–1853, arXiv: 1812.09703 | DOI | MR | Zbl

[26] Dirac P.A.M., Lectures on quantum mechanics, Belfer Grad. Sch. Sci. Monogr. Ser. 2, Belfer Graduate School of Science, New York, 1967 | MR

[27] Echeverría-Enríquez A., Muñoz Lecanda M.C., Román-Roy N., “Remarks on multisymplectic reduction”, Rep. Math. Phys., 81 (2018), 415–424, arXiv: 1712.09901 | DOI | MR | Zbl

[28] Esposito C., “Poisson reduction”, Geometric Methods in Physics, Trends Math., Birkhäuser, Cham, 2013, 131–142, arXiv: 1106.3878 | DOI | MR

[29] Fiorenza D., Rogers C.L., Schreiber U., “$L_\infty$-algebras of local observables from higher prequantum bundles”, Homology Homotopy Appl., 16 (2014), 107–142, arXiv: 1304.6292 | DOI | MR | Zbl

[30] Fiorenza D., Rogers C.L., Schreiber U., “Higher $U(1)$-gerbe connections in geometric prequantization”, Rev. Math. Phys., 28 (2016), 1650012, 72 pp., arXiv: 1304.0236 | DOI | MR | Zbl

[31] Frégier Y., Laurent-Gengoux C., Zambon M., “A cohomological framework for homotopy moment maps”, J. Geom. Phys., 97 (2015), 119–132, arXiv: 1409.3142 | DOI | MR | Zbl

[32] Gotay M.J., Isenberg J., Marsden J.E., Momentum maps and classical relativistic fields. Part II: Canonical analysis of field theories, arXiv: math-ph/0411032

[33] Gotay M.J., Isenberg J., Marsden J.E., Montgomery R., Momentum maps and classical relativistic fields. Part I: Covariant field theory, arXiv: physics/9801019

[34] Guillemin V., Sternberg S., Symplectic techniques in physics, 2nd ed., Cambridge University Press, Cambridge, 1990 | MR | Zbl

[35] Hélein F., “Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory”, Noncompact Problems at the Intersection of Geometry, Analysis, and Topology, Contemp. Math., 350, American Mathematical Society, Providence, RI, 2004, 127–147, arXiv: math-ph/0212036 | DOI | MR | Zbl

[36] Hélein F., “Multisymplectic formalism and the covariant phase space”, Variational Problems in Differential Geometry, London Math. Soc. Lecture Note Ser., 394, Cambridge University Press, Cambridge, 2012, 94–126, arXiv: 1106.2086 | MR | Zbl

[37] Herman J., “Existence and uniqueness of weak homotopy moment maps”, J. Geom. Phys., 131 (2018), 52–65, arXiv: 1711.02572 | DOI | MR | Zbl

[38] Kijowski J., “A finite-dimensional canonical formalism in the classical field theory”, Comm. Math. Phys., 30 (1973), 99–128 | DOI | MR

[39] Krepski D., Vaughan J., “Multiplicative vector fields on bundle gerbes”, Differential Geom. Appl., 84 (2022), 101931, 31 pp., arXiv: 2003.12874 | DOI | MR | Zbl

[40] Lada T., Markl M., “Strongly homotopy Lie algebras”, Comm. Algebra, 23 (1995), 2147–2161, arXiv: hep-th/9406095 | DOI | MR | Zbl

[41] Lazarev A., “Models for classifying spaces and derived deformation theory”, Proc. Lond. Math. Soc., 109 (2014), 40–64, arXiv: 1209.3866 | DOI | MR | Zbl

[42] Lee J.M., Introduction to smooth manifolds, Grad. Texts in Math., 218, 2nd ed., Springer, New York, 2013 | DOI | MR | Zbl

[43] Loday J.-L., “Une version non commutative des algèbres de Lie: les algèbres de Leibniz”, Enseign. Math., 39, 1993, 269–293 | MR | Zbl

[44] Marrero J.C., Román-Roy N., Salgado M., Vilariño S., “Reduction of polysymplectic manifolds”, J. Phys. A, 48 (2015), 055206, 43 pp., arXiv: 1306.0337 | DOI | MR | Zbl

[45] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl

[46] Marsden J.E., Misiolek G., Ortega J.P., Perlmutter M., Ratiu T.S., “Cotangent bundle reduction”, Hamiltonian Reduction by Stages, Lecture Notes in Math., 1913, Springer, Berlin, 2007, 43–99 | DOI | MR

[47] Marsden J.E., Ratiu T., “Reduction of Poisson manifolds”, Lett. Math. Phys., 11 (1986), 161–169 | DOI | MR | Zbl

[48] Marsden J.E., Weinstein A., “Comments on the history, theory, and applications of symplectic reduction”, Quantization of Singular Symplectic Quotients, Progr. Math., 198, Birkhäuser, Basel, 1–19 | DOI | MR | Zbl

[49] Meyer K.R., “Symmetries and integrals in mechanics”, Dynamical Systems, Proc. Sympos. (Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973, 259–272 | DOI | MR

[50] Miti A., Ryvkin L., Multisymplectic observable reduction from the viewpoint of constraint triples, in preparation

[51] Ortega J.-P., Ratiu T.S., Momentum maps and Hamiltonian reduction, Progr. Math., 222, Birkhäuser, Boston, MA, 2004 | DOI | MR | Zbl

[52] Ortega J.-P., Ratiu T.S., “Cotangent bundle reduction”, Encyclopedia of Mathematical Physics, Academic Press, Oxford, 2006, 658–667, arXiv: math.SG/0508636 | DOI

[53] Rogers C.L., Higher symplectic geometry, Ph.D. Thesis, University of California, 2011, arXiv: 1106.4068 | MR | Zbl

[54] Rogers C.L., “$L_\infty$-algebras from multisymplectic geometry”, Lett. Math. Phys., 100 (2012), 29–50, arXiv: 1005.2230 | DOI | MR | Zbl

[55] Ryvkin L., Wurzbacher T., “An invitation to multisymplectic geometry”, J. Geom. Phys., 142 (2019), 9–36, arXiv: 1804.02553 | DOI | MR | Zbl

[56] Ryvkin L., Wurzbacher T., Zambon M., “Conserved quantities on multisymplectic manifolds”, J. Aust. Math. Soc., 108 (2020), 120–144, arXiv: 1610.05592 | DOI | MR | Zbl

[57] Schreiber U., “Higher prequantum geometry”, New Spaces in Physics. Formal and Conceptual Reflections, Cambridge University Press, Cambridge, 2021, 202–278, arXiv: 1601.05956 | DOI | MR

[58] Sevestre G., Wurzbacher T., “On the prequantisation map for 2-plectic manifolds”, Math. Phys. Anal. Geom., 24 (2021), 20, 31 pp., arXiv: 2008.05184 | DOI | MR | Zbl

[59] Shabazi C.S., Zambon M., “Products of multisymplectic manifolds and homotopy moment maps”, J. Lie Theory, 26 (2016), 1037–1067, arXiv: 1504.08194 | MR | Zbl

[60] Sikorski R., “Differential modules”, Colloq. Math., 24 (1971), 45–79 | DOI | MR | Zbl

[61] Sikorski R., Wstep do geometrii różniczkowej, Bibl. Mat., 42, Państwowe Wydawnictwo Naukowe, Warsaw, 1972 | MR | Zbl

[62] Sjamaar R., Lerman E., “Stratified symplectic spaces and reduction”, Ann. of Math., 134 (1991), 375–422 | DOI | MR | Zbl

[63] Śniatycki J., “Constraints and quantization”, Nonlinear Partial Differential Operators and Quantization Procedures (Clausthal, 1981), Lecture Notes in Math., 1037, Springer, Berlin, 1983, 301–334 | DOI | MR

[64] Śniatycki J., “Multisymplectic reduction for proper actions”, Canad. J. Math., 56 (2004), 638–654 | DOI | MR | Zbl

[65] Śniatycki J., “Poisson algebras in reduction of symmetries”, Rep. Math. Phys., 56 (2005), 53–76 | DOI | MR | Zbl

[66] Śniatycki J., Weinstein A., “Reduction and quantization for singular momentum mappings”, Lett. Math. Phys., 7 (1983), 155–161 | DOI | MR | Zbl

[67] Stacey A., “Comparative smootheology”, Theory Appl. Categ., 25, 2011, 64–117, arXiv: 0802.2225 | MR | Zbl

[68] Stasheff J., “Homological (ghost) approach to constrained Hamiltonian systems”, Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), Contemp. Math., 132, American Mathematical Society, Providence, RI, 1992, 595–609, arXiv: hep-th/9112002 | DOI | MR

[69] Stiénon M., Xu P., “Reduction of generalized complex structures”, J. Geom. Phys., 58 (2008), 105–121, arXiv: math.DG/0509393 | DOI | MR | Zbl

[70] Sussmann H.J., “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl

[71] Tu L.W., Differential geometry. Connections, curvature, and characteristic classes, Grad. Texts in Math., 275, Springer, Cham, 2017 | DOI | MR | Zbl

[72] Vaisman I., “Reduction and submanifolds of generalized complex manifolds”, Differential Geom. Appl., 25 (2007), 147–166, arXiv: math.DG/0511013 | DOI | MR | Zbl

[73] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl

[74] Willett C., “Contact reduction”, Trans. Amer. Math. Soc., 354 (2002), 4245–4260, arXiv: math.SG/0104080 | DOI | MR | Zbl