@article{SIGMA_2024_20_a6,
author = {Eva-Maria Hekkelman and Edward McDonald},
title = {A {General} {Dixmier} {Trace} {Formula} for the {Density} of {States} on {Open} {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a6/}
}
TY - JOUR AU - Eva-Maria Hekkelman AU - Edward McDonald TI - A General Dixmier Trace Formula for the Density of States on Open Manifolds JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a6/ LA - en ID - SIGMA_2024_20_a6 ER -
Eva-Maria Hekkelman; Edward McDonald. A General Dixmier Trace Formula for the Density of States on Open Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a6/
[1] Adachi T., Sunada T., “Density of states in spectral geometry”, Comment. Math. Helv., 68 (1993), 480–493 | DOI | MR | Zbl
[2] Aizenman M., Warzel S., Random operators. Disorder effects on quantum spectra and dynamics, Grad. Stud. Math., 168, American Mathematical Society, Providence, RI, 2015 | DOI | MR | Zbl
[3] Alexander S., Orbach R., “Density of states on fractals: “fractons””, J. Physique Lett., 43 (1982), 625–631 | DOI
[4] Atiyah M.F., Singer I.M., “The index of elliptic operators on compact manifolds”, Bull. Amer. Math. Soc., 69 (1963), 422–433 | DOI | MR | Zbl
[5] Azamov N., Carey A., Dodds P., Sukochev F., “Operator integrals, spectral shift, and spectral flow”, Canad. J. Math., 61 (2009), 241–263, arXiv: math.OA/0703442 | DOI | MR | Zbl
[6] Azamov N., Hekkelman E., McDonald E., Sukochev F., Zanin D., “An application of singular traces to crystals and percolation”, J. Geom. Phys., 179 (2022), 104608, 22 pp., arXiv: 2202.03676 | DOI | MR | Zbl
[7] Azamov N., McDonald E., Sukochev F., Zanin D., “A Dixmier trace formula for the density of states”, Comm. Math. Phys., 377 (2020), 2597–2628, arXiv: 1910.12380 | DOI | MR | Zbl
[8] Bellissard J., van Elst A., Schulz-Baldes H., “The noncommutative geometry of the quantum Hall effect”, J. Math. Phys., 35 (1994), 5373–5451, arXiv: cond-mat/9411052 | DOI | MR | Zbl
[9] Berezin F.A., Shubin M.A., The Schrödinger equation, Math. Appl. (Soviet Ser.), 66, Kluwer Academic Publishers Group, Dordrecht, 1991 | DOI | MR | Zbl
[10] Birman M.Sh., Solomjak M.Z., “Estimates of singular numbers of integral operators. III Operators in unbounded domains”, Vestnik Leningrad. Univ., 24 (1969), 35–48 | MR | Zbl
[11] Bourgain J., Klein A., “Bounds on the density of states for Schrödinger operators”, Invent. Math., 194 (2013), 41–72, arXiv: 1112.1716 | DOI | MR | Zbl
[12] Bourne C., Prodan E., “Non-commutative Chern numbers for generic aperiodic discrete systems”, J. Phys. A, 51 (2018), 235202, 38 pp., arXiv: 1712.04136 | DOI | MR | Zbl
[13] Carmona R., Lacroix J., Spectral theory of random Schrödinger operators, Probab. Appl., Birkhäuser, Boston, MA, 1990 | DOI | MR | Zbl
[14] Chavel I., Riemannian geometry. A modern introduction, Cambridge Stud. Adv. Math., 98, 2nd ed., Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl
[15] Chayes J.T., Chayes L., Franz J.R., Sethna J.P., Trugman S.A., “On the density of states for the quantum percolation problem”, J. Phys. A, 19 (1986), L1173–L1177 | DOI | MR
[16] Connes A., “The action functional in noncommutative geometry”, Comm. Math. Phys., 117 (1988), 673–683 | DOI | MR | Zbl
[17] Conway J.B., A course in functional analysis, Grad. Texts in Math., 96, 2nd ed., Springer, New York, 1990 | DOI | MR | Zbl
[18] Doi S.-i., Iwatsuka A., Mine T., “The uniqueness of the integrated density of states for the Schrödinger operators with magnetic fields”, Math. Z., 237 (2001), 335–371 | DOI | MR | Zbl
[19] Eichhorn J., “The boundedness of connection coefficients and their derivatives”, Math. Nachr., 152 (1991), 145–158 | DOI | MR
[20] Eichhorn J., Global analysis on open manifolds, Nova Science Publishers, New York, 2007 | MR | Zbl
[21] Eichhorn J., Relative index theory, determinants and torsion for open manifolds, World Scientific Publishing, Hackensack, NJ, 2009 | DOI | MR | Zbl
[22] Greene R.E., “Complete metrics of bounded curvature on noncompact manifolds”, Arch. Math. (Basel), 31 (1978), 89–95 | DOI | MR | Zbl
[23] Grimaldi R., Pansu P., “Bounded geometry, growth and topology”, J. Math. Pures Appl., 95 (2011), 85–98, arXiv: 1008.4887 | DOI | MR | Zbl
[24] Große N., Schneider C., “Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces”, Math. Nachr., 286 (2013), 1586–1613, arXiv: 1301.2539 | DOI | MR | Zbl
[25] Hof A., “Some remarks on discrete aperiodic Schrödinger operators”, J. Stat. Phys., 72 (1993), 1353–1374 | DOI | MR | Zbl
[26] Kirsch W., Müller P., “Spectral properties of the Laplacian on bond-percolation graphs”, Math. Z., 252 (2006), 899–916, arXiv: math-ph/0407047 | DOI | MR | Zbl
[27] Kodani S., “An estimate on the volume of metric balls”, Kodai Math. J., 11 (1988), 300–305 | DOI | MR | Zbl
[28] Kordyukov Yu.A., “$L^p$-theory of elliptic differential operators on manifolds of bounded geometry”, Acta Appl. Math., 23 (1991), 223–260 | DOI | MR | Zbl
[29] Kosaki H., “An inequality of Araki–Lieb–Thirring (von Neumann algebra case)”, Proc. Amer. Math. Soc., 114 (1992), 477–481 | DOI | MR | Zbl
[30] Lang R., Spectral theory of random Schrödinger operators. A genetic introduction, Lecture Notes in Math., 1498, Springer, Berlin, 1991 | DOI | MR | Zbl
[31] Lenz D., Peyerimhoff N., Post O., Veselić I., “Continuity properties of the integrated density of states on manifolds”, Jpn. J. Math., 3 (2008), 121–161, arXiv: 0705.1079 | DOI | MR | Zbl
[32] Lenz D., Peyerimhoff N., Veselić I., “Integrated density of states for random metrics on manifolds”, Proc. Lond. Math. Soc., 88 (2004), 733–752, arXiv: math-ph/0212058 | DOI | MR | Zbl
[33] Lenz D., Peyerimhoff N., Veselić I., “Groupoids, von Neumann algebras and the integrated density of states”, Math. Phys. Anal. Geom., 10 (2007), 1–41, arXiv: math-ph/0203026 | DOI | MR | Zbl
[34] Levitina G., Sukochev F., Zanin D., “Cwikel estimates revisited”, Proc. Lond. Math. Soc., 120 (2020), 265–304, arXiv: 1703.04254 | DOI | MR | Zbl
[35] Lord S., Sukochev F., Zanin D., Singular traces, v. 1, De Gruyter Stud. Math., 46/1, Theory, De Gruyter, Berlin, 2021 | DOI | MR | Zbl
[36] Lord S., McDonald E., Sukochev F., Zanin D., Singular traces, v. 2, De Gruyter Stud. Math, 46/2, Trace formulas, De Gruyter, Berlin, 2023 | DOI | MR | Zbl
[37] Pastur L., Figotin A., Spectra of random and almost-periodic operators, Grundlehren Math. Wiss., 297, Springer, Berlin, 1992 | DOI | MR | Zbl
[38] Petersen P., Riemannian geometry, Grad. Texts in Math., 171, 2nd ed., Springer, New York, 2006 | DOI | MR | Zbl
[39] Peyerimhoff N., Veselić I., “Integrated density of states for ergodic random Schrödinger operators on manifolds”, Geom. Dedicata, 91 (2002), 117–135, arXiv: math-ph/0210047 | DOI | MR | Zbl
[40] Roe J., “An index theorem on open manifolds. I”, J. Differential Geom., 27 (1988), 87–113 | DOI | MR | Zbl
[41] Roe J., Elliptic operators, topology and asymptotic methods, Pitman Res. Notes Math. Ser., 395, 2nd ed., Longman, Harlow, 1998 | DOI | MR | Zbl
[42] Rudin W., Functional analysis, Internat. Ser. Pure Appl. Math., 2nd ed., McGraw-Hill, New York, 1991 | MR | Zbl
[43] Sakai T., Riemannian geometry, Transl. Math. Monogr., 149, American Mathematical Society, Providence, RI, 1996 | DOI | MR | Zbl
[44] Shubin M.A., “The spectral theory and the index of elliptic operators with almost periodic coefficients”, Russian Math. Surveys, 34 (1979), 109–157 | DOI | MR | Zbl
[45] Shubin M.A., “Spectral theory of elliptic operators on noncompact manifolds”, Astérisque, 207, 1992, 35–108 | MR | Zbl
[46] Simon B., “Schrödinger semigroups”, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447–526 | DOI | MR | Zbl
[47] Simon B., Trace ideals and their applications, Math. Surveys Monogr., 120, 2nd ed., American Mathematical Society, Providence, RI, 2005 | DOI | MR | Zbl
[48] Simon B., Operator theory: A comprehensive course in analysis, v. 4, American Mathematical Society, Providence, RI, 2015 | DOI | MR | Zbl
[49] Strichartz R.S., “Spectral asymptotics revisited”, J. Fourier Anal. Appl., 18 (2012), 626–659, arXiv: 1012.0272 | DOI | MR | Zbl
[50] Sukochev F., Zanin D., The Connes character formula for locally compact spectral triples, arXiv: 1803.01551
[51] Veselić I., “Spectral analysis of percolation Hamiltonians”, Math. Ann., 331 (2005), 841–865, arXiv: math-ph/0405006 | DOI | MR | Zbl
[52] Veselić I., Existence and regularity properties of the integrated density of states of random Schrödinger operators, Lecture Notes in Math., 1917, Springer, Berlin, 2008 | DOI | MR | Zbl
[53] Wegge-Olsen N.E., $K$-theory and $C^*$-algebras. A friendly approach, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York, 1993 | MR
[54] Wegner F., “Bounds on the density of states in disordered systems”, Z. Phys. B, 44 (1981), 9–15 | DOI | MR