@article{SIGMA_2024_20_a59,
author = {Robert Wilms},
title = {Some {Differential} {Equations} for the {Riemann} $\theta${-Function} on {Jacobians}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a59/}
}
Robert Wilms. Some Differential Equations for the Riemann $\theta$-Function on Jacobians. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a59/
[1] Arakelov S.J., “An intersection theory for divisors on an arithmetic surface”, Math. USSR Izv., 8 (1974), 1167–1180 | DOI | MR
[2] de Jong R., “Gauss map on the theta divisor and Green's functions”, Modular Forms on Schiermonnikoog, Cambridge University Press, Cambridge, 2008, 67–78, arXiv: 0705.0098 | DOI | MR | Zbl
[3] de Jong R., “Theta functions on the theta divisor”, Rocky Mountain J. Math., 40 (2010), 155–176, arXiv: math.AG/0611810 | DOI | MR | Zbl
[4] Faltings G., “Calculus on arithmetic surfaces”, Ann. of Math., 119 (1984), 387–424 | DOI | MR | Zbl
[5] Fay J.D., Theta functions on Riemann surfaces, Lect. Notes Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl
[6] Guàrdia J., “Analytic invariants in Arakelov theory for curves”, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 41–46 | DOI | MR | Zbl
[7] Mumford D., Tata lectures on theta, v. I, Prog. Math., 28, Birkhäuser, Boston, MA, 1983 | DOI | MR | Zbl
[8] Mumford D., Tata lectures on theta, v. II, Prog. Math., 43, Jacobian theta functions and differential equations, Birkhäuser, Boston, MA, 1984 | DOI | MR | Zbl
[9] Wilms R., “New explicit formulas for Faltings' delta-invariant”, Invent. Math., 209 (2017), 481–539, arXiv: 1605.00847 | DOI | MR | Zbl