A New (But Very Nearly Old) Proof of the Rogers–Ramanujan Identities
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a new proof of the Rogers–Ramanujan identities. Surprisingly, all its ingredients are available already in Rogers seminal paper from 1894, where he gave a considerably more complicated proof.
Keywords: Rogers–Ramanujan identities, constant term identities.
@article{SIGMA_2024_20_a58,
     author = {Hjalmar Rosengren},
     title = {A {New} {(But} {Very} {Nearly} {Old)} {Proof} of the {Rogers{\textendash}Ramanujan} {Identities}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a58/}
}
TY  - JOUR
AU  - Hjalmar Rosengren
TI  - A New (But Very Nearly Old) Proof of the Rogers–Ramanujan Identities
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a58/
LA  - en
ID  - SIGMA_2024_20_a58
ER  - 
%0 Journal Article
%A Hjalmar Rosengren
%T A New (But Very Nearly Old) Proof of the Rogers–Ramanujan Identities
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a58/
%G en
%F SIGMA_2024_20_a58
Hjalmar Rosengren. A New (But Very Nearly Old) Proof of the Rogers–Ramanujan Identities. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a58/

[1] Andrews G.E., “$q$-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra”, CBMS Reg. Conf. Ser. Math., 66, American Mathematical Society, Providence, RI, 1986 | DOI | MR | Zbl

[2] Andrews G.E., “On the proofs of the Rogers–Ramanujan identities”, $q$-Series and Partitions (Minneapolis, MN), IMA Vol. Math. Appl., 18, Springer, New York, 1988), 1–14 | DOI | MR

[3] Andrews G.E., Knopfmacher A., Paule P., “An infinite family of Engel expansions of Rogers–Ramanujan type”, Adv. in Appl. Math., 25 (2000), 2–11 | DOI | MR | Zbl

[4] Andrews G.E., Berndt B.C., Ramanujan's lost notebook, v. I, Springer, New York, 2005 | DOI | MR

[5] Boulet C., Pak I., “A combinatorial proof of the Rogers–Ramanujan and Schur identities”, J. Combin. Theory Ser. A, 113 (2006), 1019–1030, arXiv: math.CO/0411072 | DOI | MR | Zbl

[6] Corteel S., “Rogers–Ramanujan identities and the Robinson–Schensted–Knuth correspondence”, Proc. Amer. Math. Soc., 145 (2017), 2011–2022 | DOI | MR | Zbl

[7] Fulman J., “A probabilistic proof of the Rogers–Ramanujan identities”, Bull. London Math. Soc., 33 (2001), 397–407, arXiv: math.CO/0001078 | DOI | MR | Zbl

[8] Garrett K., Ismail M.E.H., Stanton D., “Variants of the Rogers–Ramanujan identities”, Adv. in Appl. Math., 23 (1999), 274–299 | DOI | MR | Zbl

[9] Gessel I., Stanton D., “Applications of $q$-Lagrange inversion to basic hypergeometric series”, Trans. Amer. Math. Soc., 277 (1983), 173–201 | DOI | MR | Zbl

[10] Hardy G.H., Ramanujan, Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, 1940 | MR | Zbl

[11] Ismail M.E.H., “A simple proof of Ramanujan's $_{1}\psi_{1}$ sum”, Proc. Amer. Math. Soc., 63 (1977), 185–186 | DOI | MR | Zbl

[12] Mc Laughlin J., Sills A.V., Zimmer P., “Rogers–Ramanujan–Slater type identities”, Electron. J. Combin., 15, 2008, 1–59, arXiv: 1901.00946 | MR

[13] Paule P., “Short and easy computer proofs of the Rogers–Ramanujan identities and of identities of similar type”, Electron. J. Combin., 1 (1994), R10, 9 pp. | DOI | MR | Zbl

[14] Rogers L.J., “On the expansion of some infinite products”, Proc. Lond. Math. Soc., 24 (1893), 337–352 | DOI | MR

[15] Rogers L.J., “Second memoir on the expansion of certain infinite products”, Proc. Lond. Math. Soc., 25 (1893), 318–343 | DOI | MR

[16] Rogers L.J., “On two theorems of combinatory analysis and some allied identities”, Proc. Lond. Math. Soc., 16 (1917), 315–336 | DOI

[17] Rosengren H., New proofs of the septic Rogers–Ramanujan identities, arXiv: 2302.02312

[18] Sills A.V., Derivation of identities of the Rogers–Ramanujan type by the method of constant terms, Master Thesis, Pennsylvania State University, 1994, arXiv: 2211.14717

[19] Sills A.V., “Finite Rogers–Ramanujan type identities”, Electron. J. Combin., 10 (2003), 13, 122 pp., arXiv: 1901.02435 | DOI | MR

[20] Slater L.J., “Further identities of the Rogers–Ramanujan type”, Proc. London Math. Soc. (2), 54 (1952), 147–167 | DOI | MR | Zbl

[21] Stembridge J.R., “Hall–Littlewood functions, plane partitions, and the Rogers–Ramanujan identities”, Trans. Amer. Math. Soc., 319 (1990), 469–498 | DOI | MR | Zbl

[22] Tsuchioka S., “A proof of the second Rogers–Ramanujan identity via Kleshchev multipartitions”, Proc. Japan Acad. Ser. A Math. Sci., 99 (2023), 23–26, arXiv: 2205.06038 | DOI | MR | Zbl

[23] Watson G.N., “A note on Lerch's functions”, Q. J. Math., 8 (1937), 43–47 | DOI | Zbl