Mots-clés : tt* equation
@article{SIGMA_2024_20_a56,
author = {Yuqi Li},
title = {Smooth {Solutions} of the tt* {Equation:} {A} {Numerical} {Aided} {Case} {Study}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a56/}
}
Yuqi Li. Smooth Solutions of the tt* Equation: A Numerical Aided Case Study. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a56/
[1] Cecotti S., Vafa C., “Topological–anti-topological fusion”, Nuclear Phys. B, 367 (1991), 359–461 | DOI | MR | Zbl
[2] Cecotti S., Vafa C., “Exact results for supersymmetric $\sigma$ models”, Phys. Rev. Lett., 68 (1992), 903–906 | DOI | MR | Zbl
[3] Cecotti S., Vafa C., “On classification of $N=2$ supersymmetric theories”, Comm. Math. Phys., 158 (1993), 569–644, arXiv: hep-th/9211097 | DOI | MR | Zbl
[4] Dubrovin B., “Geometry and integrability of topological-antitopological fusion”, Comm. Math. Phys., 152 (1993), 539–564, arXiv: hep-th/9206037 | DOI | MR | Zbl
[5] Guest M.A., Its A.R., Lin C.S., “Isomonodromy aspects of the tt* equations of Cecotti and Vafa I Stokes data”, Int. Math. Res. Not. IMRN, 2015 (2015), 11745–11784, arXiv: 1209.2045 | DOI | MR | Zbl
[6] Guest M.A., Its A.R., Lin C.S., “Isomonodromy aspects of the tt* equations of Cecotti and Vafa II: Riemann–Hilbert problem”, Comm. Math. Phys., 336 (2015), 337–380, arXiv: 1312.4825 | DOI | MR | Zbl
[7] Guest M.A., Its A.R., Lin C.S., “Isomonodromy aspects of the tt* equations of Cecotti and Vafa III: Iwasawa factorization and asymptotics”, Comm. Math. Phys., 374 (2020), 923–973, arXiv: 1707.00259 | DOI | MR | Zbl
[8] Guest M.A., Its A.R., Lin C.S., The tt*-Toda equations of $A_n$ type, arXiv: 2302.04597
[9] Guest M.A., Lin C.S., “Nonlinear PDE aspects of the tt* equations of Cecotti and Vafa”, J. Reine Angew. Math., 689 (2014), 1–32, arXiv: 1010.1889 | DOI | MR | Zbl
[10] Mochizuki T., Harmonic bundles and Toda lattices with opposite sign, arXiv: 1301.1718
[11] Mochizuki T., “Harmonic bundles and Toda lattices with opposite sign II”, Comm. Math. Phys., 328 (2014), 1159–1198 | DOI | MR | Zbl