Mots-clés : dispersive quantization
@article{SIGMA_2024_20_a55,
author = {Zihan Yin and Jing Kang and Xiaochuan Liu and Changzheng Qu},
title = {Talbot {Effect} for the {Manakov} {System} on the {Torus}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a55/}
}
TY - JOUR AU - Zihan Yin AU - Jing Kang AU - Xiaochuan Liu AU - Changzheng Qu TI - Talbot Effect for the Manakov System on the Torus JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a55/ LA - en ID - SIGMA_2024_20_a55 ER -
Zihan Yin; Jing Kang; Xiaochuan Liu; Changzheng Qu. Talbot Effect for the Manakov System on the Torus. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a55/
[1] Berry M.V., “Quantum fractals in boxes”, J. Phys. A, 29 (1996), 6617–6629 | DOI | MR | Zbl
[2] Berry M.V., Klein S., “Integer, fractional and fractal Talbot effects”, J. Modern Opt., 43 (1996), 2139–2164 | DOI | MR | Zbl
[3] Berry M.V., Marzoli I., Schleich W., “Quantum carpets, carpets of light”, Phys. World, 14 (2001), 39–44 | DOI
[4] Boulton L., Farmakis G., Pelloni B., “Beyond periodic revivals for linear dispersive PDEs”, Proc. A, 477 (2021), 20210241, 20 pp., arXiv: 2103.01663 | DOI | MR
[5] Boulton L., Olver P.J., Pelloni B., Smith D.A., “New revival phenomena for linear integro-differential equations”, Stud. Appl. Math., 147 (2021), 1209–1239, arXiv: 2010.01320 | DOI | MR | Zbl
[6] Bourgain J., “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I Schrödinger equations”, Geom. Funct. Anal., 3 (1993), 107–156 | DOI | MR | Zbl
[7] Bourgain J., “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II The KdV-equation”, Geom. Funct. Anal., 3 (1993), 209–262 | DOI | MR | Zbl
[8] Bourgain J., Global solutions of nonlinear Schrödinger equations, Amer. Math. Soc. Colloq. Publ., 46, American Mathematical Society, Providence, RI, 1999 | DOI | MR | Zbl
[9] Chen G., Olver P.J., “Dispersion of discontinuous periodic waves”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469 (2013), 20120407, 21 pp. | DOI | MR | Zbl
[10] Chen G., Olver P.J., “Numerical simulation of nonlinear dispersive quantization”, Discrete Contin. Dyn. Syst., 34 (2014), 991–1008 | DOI | MR | Zbl
[11] Chousionis V., Erdoğan M.B., Tzirakis N., “Fractal solutions of linear and nonlinear dispersive partial differential equations”, Proc. Lond. Math. Soc., 110 (2015), 543–564, arXiv: 1406.3283 | DOI | MR | Zbl
[12] Deliu A., Jawerth B., “Geometrical dimension versus smoothness”, Constr. Approx., 8 (1992), 211–222 | DOI | MR | Zbl
[13] Erdoğan M.B., Shakan G., “Fractal solutions of dispersive partial differential equations on the torus”, Selecta Math. (N.S.), 25 (2019), 11, 26 pp., arXiv: 1803.00674 | DOI | MR | Zbl
[14] Erdoğan M.B., Tzirakis N., “Global smoothing for the periodic KdV evolution”, Int. Math. Res. Not., 2013 (2013), 4589–4614, arXiv: 1103.4190 | DOI | MR | Zbl
[15] Erdoğan M.B., Tzirakis N., “Talbot effect for the cubic non-linear Schrödinger equation on the torus”, Math. Res. Lett., 20 (2013), 1081–1090, arXiv: 1303.3604 | DOI | MR | Zbl
[16] Erdoğan M.B., Tzirakis N., Dispersive partial differential equations: wellposedness and applications, London Math. Soc. Stud. Texts Vol. 86, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl
[17] Gottlieb D., Orszag S.A., Numerical analysis of spectral methods: theory and applications, CBMS-NSF Regional Conf. Ser. in Appl. Math., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1977 | MR | Zbl
[18] Hasegawa A., Tappert F., “Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers. I Anamalous dispersion”, Appl. Phys. Lett., 23 (1973), 142–144 | DOI
[19] Hasegawa A., Tappert F., “Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers. II Normal dispersion”, Appl. Phys. Lett., 23 (1973), 171–172 | DOI
[20] Kapitanski L., Rodnianski I., Does a quantum particle know the time?, Emerging Applications of Number Theory (Minneapolis, MN, 1996), IMA Vol. Math. Appl., 109, Springer, New York, 1999, 355–371, arXiv: quant-ph/9711062 | DOI | MR | Zbl
[21] Khinchin A.Ya., Continued fractions, University of Chicago Press, Chicago, Ill., 1964 | MR | Zbl
[22] Lévy P., Théorie de l'Addition des Variables Aléatoires, Gauthier-Villars, Paris, 1937 | MR
[23] Manakov S.V., “Complete integrability and stochastization of discrete dynamical systems”, Sov. Phys. JETP, 40 (1975), 269–274 | MR
[24] Montgomery H.L., Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Reg. Conf. Ser. Math., 84, American Mathematical Society, Providence, RI, 1994 | DOI | MR | Zbl
[25] Olver P.J., “Dispersive quantization”, Amer. Math. Monthly, 117 (2010), 599–610 | DOI | MR
[26] Olver P.J., Sheils N.E., Smith D.A., “Revivals and fractalisation in the linear free space Schrödinger equation”, Quart. Appl. Math., 78 (2020), 161–192, arXiv: 1812.08637 | DOI | MR | Zbl
[27] Oskolkov K.I., “A class of IM Vinogradov's series and its applications in harmonic analysis”, Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer, New York, 1992, 353–402 | DOI | MR | Zbl
[28] Oskolkov K.I., “Schrödinger equation and oscillatory Hilbert transforms of second degree”, J. Fourier Anal. Appl., 4 (1998), 341–356 | DOI | MR | Zbl
[29] Rodnianski I., “Fractal solutions of the Schrödinger equation”, Nonlinear PDE's, Dynamics and Continuum Physics (South Hadley, MA, 1998), Contemp. Math., 255, American Mathematical Society, Providence, RI, 2000, 181–187 | DOI | MR | Zbl
[30] Smith D.A., “Revivals and fractalization”, Dyn. Sys. Web., 2020 (2020), 8 pp. https://dsweb.siam.org/The-Magazine/All-Issues/revivals-and-fractalization
[31] Talbot H.F., “Facts related to optical science”, Philos. Mag., 9 (1836), 401–407
[32] Taylor M., “The Schrödinger equation on spheres”, Pacific J. Math., 209 (2003), 145–155 | DOI | MR | Zbl
[33] Trefethen L.N., Spectral methods in MATLAB, Software Environ. Tools, 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000 | DOI | MR | Zbl
[34] Triebel H., Theory of function spaces, Monogr. Math., 78, Birkhäuser, Basel, 1983 | DOI | MR | Zbl
[35] Vrakking M.J.J., Villeneuve D.M., Stolow A., “Observation of fractional revivals of a molecular wavepacket”, Phys. Rev. A, 54 (1996), R37–R40 | DOI
[36] Whitham G.B., Linear and nonlinear waves, John Wiley Sons, New York, 1999 | DOI | MR
[37] Yin Z., Kang J., Qu C., “Dispersive quantization and fractalization for multi-component dispersive equations”, Phys. D, 444 (2023), 133598, 9 pp. | DOI | MR | Zbl
[38] Zakharov V.E., “Stability of periodic waves of finite amplitude on the surface of a deep fluid”, J. Appl. Mech. Tech. Phys., 2 (1968), 190–194 | DOI | MR
[39] Zakharov V.E., Berhoer A., “Self-excitation of waves with different polarization in a nonlinear dielectrics”, Sov. Phys. JETP, 31 (1970), 486–490
[40] Zakharov V.E., Schul'man E.I., “To the integrability of the system of two coupled nonlinear Schrödinger equations”, Phys. D, 4 (1982), 270–274 | DOI | MR | Zbl
[41] Zakharov V.E., Shabat A.B., “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I”, Funct. Anal. Appl., 8 (1974), 226–235 | DOI | MR | Zbl