Knots, Perturbative Series and Quantum Modularity
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce an invariant of a hyperbolic knot which is a map $\alpha\mapsto \boldsymbol{\Phi}_\alpha(h)$ from $\mathbb{Q}/\mathbb{Z}$ to matrices with entries in $\overline{\mathbb{Q}}[[h]]$ and with rows and columns indexed by the boundary parabolic ${\rm SL}_2(\mathbb{C})$ representations of the fundamental group of the knot. These matrix invariants have a rich structure: (a) their $(\sigma_0,\sigma_1)$ entry, where $\sigma_0$ is the trivial and $\sigma_1$ the geometric representation, is the power series expansion of the Kashaev invariant of the knot around the root of unity ${\rm e}^{2\pi{\rm i} \alpha}$ as an element of the Habiro ring, and the remaining entries belong to generalized Habiro rings of number fields; (b) the first column is given by the perturbative power series of Dimofte–Garoufalidis; (c) the columns of $\boldsymbol{\Phi}$ are fundamental solutions of a linear $q$-difference equation; (d) the matrix defines an ${\rm SL}_2(\mathbb{Z})$-cocycle $W_\gamma$ in matrix-valued functions on $\mathbb{Q}$ that conjecturally extends to a smooth function on $\mathbb{R}$ and even to holomorphic functions on suitable complex cut planes, lifting the factorially divergent series $\boldsymbol{\Phi}(h)$ to actual functions. The two invariants $\boldsymbol{\Phi}$ and $W_\gamma$ are related by a refined quantum modularity conjecture which we illustrate in detail for the three simplest hyperbolic knots, the $4_1$, $5_2$ and $(-2,3,7)$ pretzel knots. This paper has two sequels, one giving a different realization of our invariant as a matrix of convergent $q$-series with integer coefficients and the other studying its Habiro-like arithmetic properties in more depth.
Keywords: quantum topology, knots, $3$-manifolds, Chern–Simons theory, asymptotics, quantum modularity conjecture, quantum modular forms, hyperbolic $3$-manifolds, dilogarithm, $\mathrm{SL}_2(\mathbb{Z})$, denominators, Habiro-like functions, functions near $\mathbb{Q}$, Nahm sums, $q$-holonomic modules.
Mots-clés : Jones polynomial, Kashaev invariant, volume conjecture, cocycles, Neumann–Zagier matrices
@article{SIGMA_2024_20_a54,
     author = {Stavros Garoufalidis and Don Zagier},
     title = {Knots, {Perturbative} {Series} and {Quantum} {Modularity}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a54/}
}
TY  - JOUR
AU  - Stavros Garoufalidis
AU  - Don Zagier
TI  - Knots, Perturbative Series and Quantum Modularity
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a54/
LA  - en
ID  - SIGMA_2024_20_a54
ER  - 
%0 Journal Article
%A Stavros Garoufalidis
%A Don Zagier
%T Knots, Perturbative Series and Quantum Modularity
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a54/
%G en
%F SIGMA_2024_20_a54
Stavros Garoufalidis; Don Zagier. Knots, Perturbative Series and Quantum Modularity. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a54/

[1] Andersen J.E., Kashaev R., “A TQFT from quantum Teichmüller theory”, Comm. Math. Phys., 330 (2014), 887–934, arXiv: 1109.6295 | DOI | MR | Zbl

[2] Atiyah M.F., Hirzebruch F., “Cohomologie-{O}perationen und charakteristische Klassen”, Math. Z., 77 (1961), 149–187 | DOI | MR | Zbl

[3] Bar-Natan D., KnotAtlas, , 2005 http://katlas.org | Zbl

[4] Beem C., Dimofte T., Pasquetti S., “Holomorphic blocks in three dimensions”, J. High Energy Phys., 2014:12 (2014), 177, 118 pp., arXiv: 1211.1986 | DOI | MR | Zbl

[5] Bender C.M., Orszag S.A., Advanced mathematical methods for scientists and engineers, Int. Ser. Monogr. Pure Appl. Math., McGraw-Hill Book Co., New York, 1978 | MR | Zbl

[6] Bettin S., Drappeau S., “Modularity and value distribution of quantum invariants of hyperbolic knots”, Math. Ann., 382 (2022), 1631–1679, arXiv: 1905.02045 | DOI | MR | Zbl

[7] Borot G., Eynard B., “All order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials”, Quantum Topol., 6 (2015), 39–138, arXiv: 1205.2261 | DOI | MR | Zbl

[8] Boyd D.W., Rodriguez-Villegas F., Mahler's measure and the dilogarithm. (II), 2005, arXiv: math.NT/0308041

[9] Calegari D., “Real places and torus bundles”, Geom. Dedicata, 118 (2006), 209–227, arXiv: math.GT/0510416 | DOI | MR | Zbl

[10] Calegari F., Garoufalidis S., Zagier D., “Bloch groups, algebraic $K$-theory, units, and Nahm's conjecture”, Ann. Sci. Éc. Norm. Supér. (4), 56 (2023), 383–426, arXiv: 1712.04887 | DOI | MR | Zbl

[11] Cooper D., Culler M., Gillet H., Long D.D., Shalen P.B., “Plane curves associated to character varieties of $3$-manifolds”, Invent. Math., 118 (1994), 47–84 | DOI | MR | Zbl

[12] Culler M., Dunfield N., Weeks J., SnapPy, a computer program for studying the topology of $3$-manifolds, , 2015 http://snappy.computop.org/

[13] Dimofte T., Gaiotto D., Gukov S., “Gauge theories labelled by three-manifolds”, Comm. Math. Phys., 325 (2014), 367–419, arXiv: 1108.4389 | DOI | MR | Zbl

[14] Dimofte T., Garoufalidis S., “The quantum content of the gluing equations”, Geom. Topol., 17 (2013), 1253–1315, arXiv: 1202.6268 | DOI | MR | Zbl

[15] Dimofte T., Garoufalidis S., “Quantum modularity and complex Chern–Simons theory”, Commun. Number Theory Phys., 12 (2018), 1–52, arXiv: 1511.05628 | DOI | MR | Zbl

[16] Dimofte T., Gukov S., Lenells J., Zagier D., “Exact results for perturbative Chern–Simons theory with complex gauge group”, Commun. Number Theory Phys., 3 (2009), 363–443, arXiv: 0903.2472 | DOI | MR | Zbl

[17] Dunfield N.M., Thurston W.P., “The virtual Haken conjecture: experiments and examples”, Geom. Topol., 7 (2003), 399–441, arXiv: math.GT/0209214 | DOI | MR | Zbl

[18] Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Sulkowski P., “$\widehat{Z}$ at large $N$: from curve counts to quantum modularity”, Comm. Math. Phys., 396 (2022), 143–186, arXiv: 2005.13349 | DOI | MR | Zbl

[19] Faddeev L.D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254, arXiv: hep-th/9504111 | DOI | MR | Zbl

[20] Faddeev L.D., Kashaev R.M., “Quantum dilogarithm”, Modern Phys. Lett. A, 9 (1994), 427–434, arXiv: hep-th/9310070 | DOI | MR | Zbl

[21] Fock V., Goncharov A., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211, arXiv: math.AG/0311149 | DOI | MR | Zbl

[22] Gang D., Kim S., Yoon S., “Adjoint Reidemeister torsions from wrapped M5-branes”, Adv. Theor. Math. Phys., 25 (2021), 1819–1845, arXiv: 1911.10718 | DOI | MR | Zbl

[23] Garoufalidis S., “Chern–Simons theory, analytic continuation and arithmetic”, Acta Math. Vietnam., 33 (2008), 335–362, arXiv: 0711.1716 | MR | Zbl

[24] Garoufalidis S., Twist knots data, 2010 http://people.mpim-bonn.mpg.de/stavros/publications/twist.knot.data

[25] Garoufalidis S., Pretzel knots data, 2012 http://people.mpim-bonn.mpg.de/stavros/publications/pretzel.data

[26] Garoufalidis S., Goerner M., Zickert C.K., “The Ptolemy field of 3-manifold representations”, Algebr. Geom. Topol., 15 (2015), 371–397, arXiv: 1401.5542 | DOI | MR | Zbl

[27] Garoufalidis S., Gu J., Mariño M., “The resurgent structure of quantum knot invariants”, Comm. Math. Phys., 386 (2021), 469–493, arXiv: 2007.10190 | DOI | MR | Zbl

[28] Garoufalidis S., Gu J., Mariño M., “Peacock patterns and resurgence in complex Chern–Simons theory”, Res. Math. Sci., 10 (2023), 29, 67 pp., arXiv: 2012.00062 | DOI | MR

[29] Garoufalidis S., Kashaev R., “Evaluation of state integrals at rational points”, Commun. Number Theory Phys., 9 (2015), 549–582, arXiv: 1411.6062 | DOI | MR | Zbl

[30] Garoufalidis S., Kashaev R., “From state integrals to $q$-series”, Math. Res. Lett., 24 (2017), 781–801, arXiv: 1304.2705 | DOI | MR | Zbl

[31] Garoufalidis S., Kashaev R., “The descendant colored Jones polynomials”, Pure Appl. Math. Q., 19 (2023), 2307–2334, arXiv: 2108.07553 | DOI | MR

[32] Garoufalidis S., Kashaev R., Zagier D., A modular quantum dilogarithm and invariants of 3-manifolds, in preparation

[33] Garoufalidis S., Koutschan C., “The noncommutative $A$-polynomial of $(-2,3,n)$ pretzel knots”, Exp. Math., 21 (2012), 241–251, arXiv: 1101.2844 | DOI | MR | Zbl

[34] Garoufalidis S., Koutschan C., “Irreducibility of $q$-difference operators and the knot $7_4$”, Algebr. Geom. Topol., 13 (2013), 3261–3286, arXiv: 1211.6020 | DOI | MR | Zbl

[35] Garoufalidis S., Lê T.T.Q., “The colored Jones function is $q$-holonomic”, Geom. Topol., 9 (2005), 1253–1293, arXiv: math.GT/0309214 | DOI | MR | Zbl

[36] Garoufalidis S., Lê T.T.Q., “From 3-dimensional skein theory to functions near $\mathbb{Q}$”, Ann. Inst. Fourier (to appear) , arXiv: 2307.09135

[37] Garoufalidis S., Sabo E., Scott S., “Exact computation of the $n$-loop invariants of knots”, Exp. Math., 25 (2016), 125–129, arXiv: 6458.2015 | DOI | MR | Zbl

[38] Garoufalidis S., Scholze P., Wheeler C., Zagier D., The Habiro ring of a number field, in preparation

[39] Garoufalidis S., Sun X., “The non-commutative $A$-polynomial of twist knots”, J. Knot Theory Ramifications, 19 (2010), 1571–1595, arXiv: 0802.4074 | DOI | MR | Zbl

[40] Garoufalidis S., Thurston D.P., Zickert C.K., “The complex volume of ${\rm SL}(n,\mathbb{C})$-representations of 3-manifolds”, Duke Math. J., 164 (2015), 2099–2160, arXiv: 1111.2828 | DOI | MR | Zbl

[41] Garoufalidis S., van der Veen R., “Asymptotics of classical spin networks (with an appendix by Don Zagier)”, Geom. Topol., 17 (2013), 1–37, arXiv: 0902.3113 | DOI | MR | Zbl

[42] Garoufalidis S., Zagier D., “Asymptotics of Nahm sums at roots of unity”, Ramanujan J., 55 (2021), 219–238, arXiv: 1812.07690 | DOI | MR | Zbl

[43] Garoufalidis S., Zagier D., “Hyperbolic 3-manifolds, the Bloch group, and the work of Walter Neumann”, Celebratio Math., 2023 https://celebratio.org/Neumann_WD/article/1106

[44] Garoufalidis S., Zagier D., “Knots and their related $q$-series”, SIGMA, 19 (2023), 082, 39 pp., arXiv: 2304.09377 | DOI | MR | Zbl

[45] Garoufalidis S., Zagier D., Resummation of factorially divergent series, in preparation

[46] Goette S., Zickert C.K., “The extended Bloch group and the Cheeger–Chern–Simons class”, Geom. Topol., 11 (2007), 1623–1635, arXiv: 0705.0500 | DOI | MR | Zbl

[47] Grünberg D.B., Moree P., Zagier D., “Sequences of enumerative geometry: congruences and asymptotics”, Exp. Math., 17 (2008), 409–426, arXiv: math.NT/0610286 | DOI | MR | Zbl

[48] Gukov S., “Three-dimensional quantum gravity, Chern–Simons theory, and the A-polynomial”, Comm. Math. Phys., 255 (2005), 577–627, arXiv: hep-th/0306165 | DOI | MR | Zbl

[49] Gukov S., Mariño M., Putrov P., Resurgence in complex Chern–Simons theory, arXiv: 1605.07615

[50] Gukov S., Pei D., Putrov P., Vafa C., “BPS spectra and 3-manifold invariants”, J. Knot Theory Ramifications, 29 (2020), 2040003, 85 pp., arXiv: 2040003 | DOI | MR | Zbl

[51] Gunningham S., Jordan D., Safronov P., “The finiteness conjecture for skein modules”, Invent. Math., 232 (2023), 301–363, arXiv: 1908.05233 | DOI | MR | Zbl

[52] Habiro K., “On the quantum $\rm sl_2$ invariants of knots and integral homology spheres”, Invariants of {K}nots and 3-manifolds, Geom. Topol. Monogr., 4, Geometry Topology Publications, Coventry, 2002, 55–68, arXiv: math.GT/0211044 | DOI | MR | Zbl

[53] Hikami K., “Generalized volume conjecture and the $A$-polynomials: the Neumann–Zagier potential function as a classical limit of the partition function”, J. Geom. Phys., 57 (2007), 1895–1940, arXiv: math.QA/0604094 | DOI | MR | Zbl

[54] Hirzebruch F., Topological methods in algebraic geometry, Class. Math., Springer, Berlin, 1995 | DOI | MR | Zbl

[55] Hirzebruch F., Zagier D., The Atiyah–Singer theorem and elementary number theory, Math. Lect. Ser., 3, Publish or Perish, Inc., Boston, MA, 1974 | MR | Zbl

[56] Igusa J., Theta functions, Grundlehren Math. Wiss., 194, Springer, New York, 1972 | DOI | MR | Zbl

[57] Jones V.F.R., “Hecke algebra representations of braid groups and link polynomials”, Ann. of Math., 126 (1987), 335–388 | DOI | MR | Zbl

[58] Kashaev R., “A link invariant from quantum dilogarithm”, Modern Phys. Lett. A, 10 (1995), 1409–1418, arXiv: q-alg/9504020 | DOI | MR | Zbl

[59] Kashaev R., “The hyperbolic volume of knots from the quantum dilogarithm”, Lett. Math. Phys., 39 (1997), 269–275, arXiv: q-alg/9601025 | DOI | MR | Zbl

[60] Kashaev R., Mangazeev V., Stroganov Yu., “Star-square and tetrahedron equations in the Baxter–Bazhanov model”, Internat. J. Modern Phys. A, 8 (1993), 1399–1409 | DOI | MR

[61] Kontsevich M., Talks on resurgence (July 20, 2020 and August 21, 2020)

[62] Lawrence R., Zagier D., “Modular forms and quantum invariants of $3$-manifolds”, Asian J. Math., 3 (1999), 93–107 | DOI | MR | Zbl

[63] Lewis J., Zagier D., “Period functions for Maass wave forms. I”, Ann. of Math., 153 (2001), 191–258, arXiv: math.NT/0101270 | DOI | MR | Zbl

[64] Murakami H., Murakami J., “The colored Jones polynomials and the simplicial volume of a knot”, Acta Math., 186 (2001), 85–104, arXiv: math/9905075 | DOI | MR | Zbl

[65] Neumann W.D., “Combinatorics of triangulations and the Chern–Simons invariant for hyperbolic $3$-manifolds”, Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992, 243–271 | DOI | MR

[66] Neumann W.D., “Extended Bloch group and the Cheeger–Chern–Simons class”, Geom. Topol., 8 (2004), 413–474, arXiv: math/0307092 | DOI | MR | Zbl

[67] Neumann W.D., Zagier D., “Volumes of hyperbolic three-manifolds”, Topology, 24 (1985), 307–332 | DOI | MR | Zbl

[68] Ohtsuki T., “A polynomial invariant of rational homology $3$-spheres”, Invent. Math., 123 (1996), 241–257 | DOI | MR | Zbl

[69] Rademacher H., “Zur Theorie der Dedekindschen Summen”, Math. Z., 63 (1956), 445–463 | DOI | MR | Zbl

[70] Sloane N., Online encyclopedia of integer sequences, https://oeis.org

[71] Suslin A.A., “$K_3$ of a field, and the Bloch group”, Proc. Steklov Inst. Math., 1991:4 (1991), 217–239 | MR

[72] Thurston W., The geometry and topology of 3-manifolds, Universitext, Springer, Berlin, 1977 | MR

[73] Turaev V.G., “The Yang–Baxter equation and invariants of links”, Invent. Math., 92 (1988), 527–553 | DOI | MR | Zbl

[74] van der Veen R., “Proof of the volume conjecture for Whitehead chains”, Acta Math. Vietnam., 33 (2008), 421–431, arXiv: math.GT/0611181 | MR | Zbl

[75] Vlasenko M., Zwegers S., “Nahm's conjecture: asymptotic computations and counterexamples”, Commun. Number Theory Phys., 5 (2011), 617–642, arXiv: 1104.4008 | DOI | MR | Zbl

[76] Wheeler C., Modular $q$-difference equations and quantum invariants of hyperbolic three-manifolds, Ph.D. Thesis, University of Bonn, 2023

[77] Wilf H.S., Zeilberger D., “An algorithmic proof theory for hypergeometric (ordinary and "$q$") multisum/integral identities”, Invent. Math., 108 (1992), 575–633 | DOI | MR

[78] Witten E., “Analytic continuation of Chern–Simons theory”, Chern–Simons Gauge Theory: 20 Years After, AMS/IP Stud. Adv. Math., 50, American Mathematical Society, Providence, RI, 2011, 347–446, arXiv: 1001.2933 | DOI | MR | Zbl

[79] Witten E., “Fivebranes and knots”, Quantum Topol., 3 (2012), 1–137, arXiv: 1101.3216 | DOI | MR | Zbl

[80] Witten E., “Two lectures on the Jones polynomial and Khovanov homology”, Lectures on Geometry, Clay Lect. Notes, Oxford University Press, Oxford, 2017, 1–27, arXiv: 1401.6996 | MR | Zbl

[81] Witten E., Searching for new invariants of 4-manifolds and knots, Auckland, New Zealand, January 2020

[82] Zagier D., “Vassiliev invariants and a strange identity related to the Dedekind eta-function”, Topology, 40 (2001), 945–960 | DOI | MR | Zbl

[83] Zagier D., “The dilogarithm function”, Frontiers in Number Theory, Physics, and Geometry, v. II, Springer, Berlin, 2007, 3–65 | DOI | MR | Zbl

[84] Zagier D., “Quantum modular forms”, Quanta of Maths, Clay Math. Proc., 11, American Mathematical Society, Providence, RI, 2010, 659–675 | MR | Zbl

[85] Zagier D., Holomorphic quantum modular forms, in preparation

[86] Zagier D., Gangl H., “Classical and elliptic polylogarithms and special values of $L$-series”, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer, Dordrecht, 2000, 561–615 | DOI | MR | Zbl

[87] Zickert C.K., “The volume and Chern–Simons invariant of a representation”, Duke Math. J., 150 (2009), 489–532, arXiv: 0710.2049 | DOI | MR | Zbl

[88] Zickert C.K., “The extended {B}loch group and algebraic $K$-theory”, J. Reine Angew. Math., 704 (2015), 21–54, arXiv: 0910.4005 | DOI | MR | Zbl