Fay Identities of Pfaffian Type for Hyperelliptic Curves
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish identities of Pfaffian type for the theta function associated with twice or half the period matrix of a hyperelliptic curve. They are implied by the large size asymptotic analysis of exact Pfaffian identities for expectation values of ratios of characteristic polynomials in ensembles of orthogonal or quaternionic self-dual random matrices. We show that they amount to identities for the theta function with the period matrix of a hyperelliptic curve, and in this form we reprove them by direct geometric methods.
Keywords: random matrix theory, theta function, Fay's identity, hyperelliptic curves.
@article{SIGMA_2024_20_a53,
     author = {Ga\"etan Borot and Thomas Buc-D{\textquotedblright}Alche},
     title = {Fay {Identities} of {Pfaffian} {Type} for {Hyperelliptic} {Curves}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a53/}
}
TY  - JOUR
AU  - Gaëtan Borot
AU  - Thomas Buc-D”Alche
TI  - Fay Identities of Pfaffian Type for Hyperelliptic Curves
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a53/
LA  - en
ID  - SIGMA_2024_20_a53
ER  - 
%0 Journal Article
%A Gaëtan Borot
%A Thomas Buc-D”Alche
%T Fay Identities of Pfaffian Type for Hyperelliptic Curves
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a53/
%G en
%F SIGMA_2024_20_a53
Gaëtan Borot; Thomas Buc-D”Alche. Fay Identities of Pfaffian Type for Hyperelliptic Curves. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a53/

[1] Albeverio S., Pastur L., Shcherbina M., “On the $1/n$ expansion for some unitary invariant ensembles of random matrices”, Comm. Math. Phys., 224 (2001), 271–305 | DOI | MR | Zbl

[2] Anderson G.W., Guionnet A., Zeitouni O., An introduction to random matrices, Cambridge Stud. Adv. Math., 118, Cambridge University Press, Cambridge, 2009 | DOI | MR

[3] Bertola M., Riemann surfaces and theta functions, Course at Concordia University, 2006 https://mypage.concordia.ca/mathstat/bertola/ThetaCourse/ThetaCourse.pdf

[4] Bertola M., “Free energy of the two-matrix model/dToda tau-function”, Nuclear Phys. B, 669 (2003), 435–461, arXiv: hep-th/0306184 | DOI | MR | Zbl

[5] Bertola M., “Boutroux curves with external field: equilibrium measures without a variational problem”, Anal. Math. Phys., 1 (2011), 167–211, arXiv: 0705.3062 | DOI | MR | Zbl

[6] Bonnet G., David F., Eynard B., “Breakdown of universality in multi-cut matrix models”, J. Phys. A, 33 (2000), 6739–6768, arXiv: cond-mat/0003324 | DOI | MR | Zbl

[7] Borodin A., Strahov E., “Averages of characteristic polynomials in random matrix theory”, Comm. Pure Appl. Math., 59 (2006), 161–253, arXiv: math-ph/0407065 | DOI | MR | Zbl

[8] Borot G., Eynard B., “Geometry of spectral curves and all order dispersive integrable system”, SIGMA, 8 (2012), 100, 53 pp., arXiv: 1110.4936 | DOI | MR | Zbl

[9] Borot G., Eynard B., Orantin N., “Abstract loop equations, topological recursion and new applications”, Commun. Number Theory Phys., 9 (2015), 51–187, arXiv: 1303.5808 | DOI | MR | Zbl

[10] Borot G., Eynard B., Weisse A., “Root systems, spectral curves, and analysis of a Chern–Simons matrix model for Seifert fibered spaces”, Selecta Math. (N.S.), 23 (2017), 915–1025, arXiv: 1407.4500 | DOI | MR | Zbl

[11] Borot G., Gorin V., Guionnet A., Fluctuations for multi-cut discrete $\beta$-ensembles and application to random tilings, in preparation

[12] Borot G., Guionnet A., “Asymptotic expansion of $\beta$ matrix models in the one-cut regime”, Comm. Math. Phys., 317 (2013), 447–483, arXiv: 1107.1167 | DOI | MR | Zbl

[13] Borot G., Guionnet A., “Asymptotic expansion of $\beta$ matrix models in the multi-cut regime”, Forum Math. Sigma, 12 (2024), e13, 93 pp., arXiv: 1303.1045 | DOI | MR

[14] Borot G., Guionnet A., Kozlowski K.K., “Large-$N$ asymptotic expansion for mean field models with Coulomb gas interaction”, Int. Math. Res. Not., 2015 (2015), 10451–10524, arXiv: 1312.6664 | DOI | MR | Zbl

[15] Brézin E., Itzykson C., Parisi G., Zuber J.B., “Planar diagrams”, Comm. Math. Phys., 59 (1978), 35–51 | DOI | MR | Zbl

[16] Carlson J., Müller-Stach S., Peters C., Period mappings and period domains, Cambridge Stud. Adv. Math., 168, Cambridge University Press, Cambridge, 2017 | DOI | MR | Zbl

[17] Charlier C., Fahs B., Webb C., Wong M.D., Asymptotics of Hankel determinants with a multi-cut regular potential and Fisher–Hartwig singularities, arXiv: 2111.08395

[18] Claeys T., Grava T., McLaughlin K.D.T.-R., “Asymptotics for the partition function in two-cut random matrix models”, Comm. Math. Phys., 339 (2015), 513–587, arXiv: 1410.7001 | DOI | MR | Zbl

[19] Deift P.A., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, American Mathematical Society, Providence, RI, 1999 | DOI | MR

[20] Eynard B., Kimura T., Ribault S., Random matrices, arXiv: 1510.04430

[21] Eynard B., Mehta M.L., “Matrices coupled in a chain. I Eigenvalue correlations”, J. Phys. A, 31 (1998), 4449–4456, arXiv: cond-mat/9710230 | DOI | MR | Zbl

[22] Farkas H.M., Kra I., Riemann surfaces, Grad. Texts in Math., 71, 2nd ed., Springer, New York, 1992 | DOI | MR | Zbl

[23] Fay J.D., Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer, Berlin, 1973 | DOI | MR | Zbl

[24] Johansson K., “On fluctuations of eigenvalues of random Hermitian matrices”, Duke Math. J., 91 (1998), 151–204 | DOI | MR | Zbl

[25] Jurkiewicz J., “Chaotic behaviour in one-matrix models”, Phys. Lett. B, 261 (1991), 260–268 | DOI | MR

[26] Krichever I.M., “Methods of algebraic geometry in the theory of nonlinear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl

[27] Matveev V.B., “30 years of finite-gap integration theory”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 837–875 | DOI | MR | Zbl

[28] Mehta M.L., Random matrices, Pure Appl. Math. (Amsterdam), 142, 3rd ed., Elsevier, Amsterdam, 2004 | MR | Zbl

[29] Migdal A.A., “Loop equations and 1/N expansion”, Phys. Rep., 102 (1983), 199–290 | DOI

[30] Miranda C., “Un'osservazione su un teorema di Brouwer”, Boll. Un. Mat. Ital., 3, 1941, 5–7 | MR

[31] Mulase M., “Cohomological structure in soliton equations and Jacobian varieties”, J. Differential Geom., 19 (1984), 403–430 | DOI | MR | Zbl

[32] Mumford D., Tata lectures on theta, v. I, Mod. Birkhäuser Class., Birkhäuser, Boston, MA, 2007 | DOI | MR

[33] Pastur L., “Limiting laws of linear eigenvalue statistics for Hermitian matrix models”, J. Math. Phys., 47 (2006), 103303, 22 pp., arXiv: math.PR/0608719 | DOI | MR | Zbl

[34] Shcherbina M., “Fluctuations of linear eigenvalue statistics of $\beta$ matrix models in the multi-cut regime”, J. Stat. Phys., 151 (2013), 1004–1034, arXiv: 1205.7062 | DOI | MR | Zbl

[35] Shiota T., “Characterization of Jacobian varieties in terms of soliton equations”, Invent. Math., 83 (1986), 333–382 | DOI | MR | Zbl