Infinitesimal Modular Group: $q$-Deformed $\mathfrak{sl}_2$ and Witt Algebra
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe new $q$-deformations of the $3$-dimensional Heisenberg algebra, the simple Lie algebra $\mathfrak{sl}_2$ and the Witt algebra. They are constructed through a realization as differential operators. These operators are related to the modular group and $q$-deformed rational numbers defined by Morier-Genoud and Ovsienko and lead to $q$-deformed Möbius transformations acting on the hyperbolic plane.
Keywords: quantum algebra, Lie algebra deformations, $q$-Virasoro, Burau representation.
@article{SIGMA_2024_20_a52,
     author = {Alexander Thomas},
     title = {Infinitesimal {Modular} {Group:} $q${-Deformed} $\mathfrak{sl}_2$ and {Witt} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a52/}
}
TY  - JOUR
AU  - Alexander Thomas
TI  - Infinitesimal Modular Group: $q$-Deformed $\mathfrak{sl}_2$ and Witt Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a52/
LA  - en
ID  - SIGMA_2024_20_a52
ER  - 
%0 Journal Article
%A Alexander Thomas
%T Infinitesimal Modular Group: $q$-Deformed $\mathfrak{sl}_2$ and Witt Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a52/
%G en
%F SIGMA_2024_20_a52
Alexander Thomas. Infinitesimal Modular Group: $q$-Deformed $\mathfrak{sl}_2$ and Witt Algebra. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a52/

[1] Avan J., Frappat L., Ragoucy E., “Deformed Virasoro algebras from elliptic quantum algebras”, Comm. Math. Phys., 354 (2017), 753–773, arXiv: 1607.05050 | DOI | MR | Zbl

[2] Bapat A., Becker L., Licata A.M., “$q$-deformed rational numbers and the 2-Calabi–Yau category of type $A_2$”, Forum Math. Sigma, 11 (2023), e47, 41 pp., arXiv: 2202.07613 | DOI | MR | Zbl

[3] Bharathram V., Birman J., “On the Burau representation of $B_4$”, Involve, 14 (2021), 143–154, arXiv: 2208.12378 | DOI | MR

[4] Burau W., “Über Zopfgruppen und gleichsinnig verdrillte Verkettungen”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 179–186 | DOI | MR | Zbl

[5] Chaichian M., Isaev A.P., Lukierski J., Popowicz Z., Prešnajder P., “$q$-deformations of Virasoro algebra and conformal dimensions”, Phys. Lett. B, 262 (1991), 32–38 | DOI | MR

[6] Curtright T.L., Zachos C.K., “Deforming maps for quantum algebras”, Phys. Lett. B, 243 (1990), 237–244 | DOI | MR

[7] Frenkel E., Reshetikhin N., “Quantum affine algebras and deformations of the Virasoro and ${\mathcal W}$-algebras”, Comm. Math. Phys., 178 (1996), 237–264, arXiv: q-alg/9505025 | DOI | MR | Zbl

[8] Hartwig J.T., Larsson D., Silvestrov S.D., “Deformations of Lie algebras using $\sigma$-derivations”, J. Algebra, 295 (2006), 314–361, arXiv: math.QA/0408064 | DOI | MR | Zbl

[9] Hu N., “$q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations”, Algebra Colloq., 6 (1999), 51–70, arXiv: math.QA/0512526 | MR | Zbl

[10] Kassel C., “Cyclic homology of differential operators, the Virasoro algebra and a $q$-analogue”, Comm. Math. Phys., 146 (1992), 343–356 | DOI | MR | Zbl

[11] Khesin B., Lyubashenko V., Roger C., “Extensions and contractions of the Lie algebra of $q$-pseudodifferential symbols on the circle”, J. Funct. Anal., 143 (1997), 55–97, arXiv: hep-th/9403189 | DOI | MR | Zbl

[12] Morier-Genoud S., Ovsienko V., “$q$-deformed rationals and $q$-continued fractions”, Forum Math. Sigma, 8 (2020), e13, 55 pp., arXiv: 1812.00170 | DOI | MR | Zbl

[13] Morier-Genoud S., Ovsienko V., “On $q$-deformed real numbers”, Exp. Math., 31 (2022), 652–660, arXiv: 1908.04365 | DOI | MR | Zbl

[14] Morier-Genoud S., Ovsienko V., Veselov A.P., “Burau representation of braid groups and $q$-rationals”, Int. Math. Res. Not., 2024 (2024), 8618–8627, arXiv: 2309.04240 | DOI | MR

[15] Nedelin A., Zabzine M., “$q$-Virasoro constraints in matrix models”, J. High Energy Phys., 2017:3 (2017), 098, 17 pp., arXiv: 1511.03471 | DOI | MR

[16] Nigro A., “A $q$-Virasoro algebra at roots of unity, free fermions, and Temperley–Lieb hamiltonians”, J. Math. Phys., 57 (2016), 041702, 12 pp., arXiv: 1211.1067 | DOI | MR | Zbl

[17] Ovsienko V., “Towards quantized complex numbers: $q$-deformed Gaussian integers and the Picard group”, Open Commun. Nonlinear Math. Phys., 1 (2021), 73–93, arXiv: 2103.10800 | DOI

[18] Scherich N., “Classification of the real discrete specialisations of the Burau representation of $B_3$”, Math. Proc. Cambridge Philos. Soc., 168 (2020), 295–304, arXiv: 1801.08203 | DOI | MR | Zbl

[19] Shiraishi J., Kubo H., Awata H., Odake S., “A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions”, Lett. Math. Phys., 38 (1996), 33–51, arXiv: q-alg/9507034 | DOI | MR | Zbl

[20] Tsallis C., “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52 (1988), 479–487 | DOI | MR | Zbl