Stationarity and Fredholm Theory in Subextremal Kerr–de Sitter Spacetimes
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a recent paper, we proved that solutions to linear wave equations in a subextremal Kerr–de Sitter spacetime have asymptotic expansions in quasinormal modes up to a decay order given by the normally hyperbolic trapping, extending the results of Vasy (2013). One central ingredient in the argument was a new definition of quasinormal modes, where a non-standard choice of stationary Killing vector field had to be used in order for the Fredholm theory to be applicable. In this paper, we show that there is in fact a variety of allowed choices of stationary Killing vector fields. In particular, the horizon Killing vector fields work for the analysis, in which case one of the corresponding ergoregions is completely removed.
Keywords: subextremal Kerr–de Sitter spacetime, resonances, radial points, normally hyperbolic trapping.
Mots-clés : quasinormal modes
@article{SIGMA_2024_20_a51,
     author = {Oliver Petersen and Andr\'as Vasy},
     title = {Stationarity and {Fredholm} {Theory} in {Subextremal} {Kerr{\textendash}de} {Sitter} {Spacetimes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a51/}
}
TY  - JOUR
AU  - Oliver Petersen
AU  - András Vasy
TI  - Stationarity and Fredholm Theory in Subextremal Kerr–de Sitter Spacetimes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a51/
LA  - en
ID  - SIGMA_2024_20_a51
ER  - 
%0 Journal Article
%A Oliver Petersen
%A András Vasy
%T Stationarity and Fredholm Theory in Subextremal Kerr–de Sitter Spacetimes
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a51/
%G en
%F SIGMA_2024_20_a51
Oliver Petersen; András Vasy. Stationarity and Fredholm Theory in Subextremal Kerr–de Sitter Spacetimes. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a51/

[1] Dyatlov S., “Asymptotics of linear waves and resonances with applications to black holes”, Comm. Math. Phys., 335 (2015), 1445–1485, arXiv: 1305.1723 | DOI | MR | Zbl

[2] Dyatlov S., “Resonance projectors and asymptotics for $r$-normally hyperbolic trapped sets”, J. Amer. Math. Soc., 28 (2015), 311–381, arXiv: 1301.5633 | DOI | MR | Zbl

[3] Dyatlov S., “Spectral gaps for normally hyperbolic trapping”, Ann. Inst. Fourier (Grenoble), 66 (2016), 55–82, arXiv: 1403.6401 | DOI | MR | Zbl

[4] Hintz P., “Mode stability and shallow quasinormal modes of Kerr–de Sitter black holes away from extremality”, J. Eur. Math. Soc. (JEMS) (to appear) , arXiv: 2112.14431 | DOI

[5] Hörmander L., The analysis of linear partial differential operators, v. III, Classics Math., Pseudo-differential operators, Springer, Berlin, 2007 | DOI | MR | Zbl

[6] Petersen O., Vasy A., “Wave equations in Kerr–de Sitter spacetimes: the full subextremal range”, J. Eur. Math. Soc. (JEMS) (to appear) , arXiv: 2112.01355 | DOI

[7] Petersen O., Vasy A., “Analyticity of quasinormal modes in the Kerr and Kerr–de Sitter spacetimes”, Comm. Math. Phys., 402 (2023), 2547–2575, arXiv: 2104.04500 | DOI | MR

[8] Vasy A., “Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces (with an appendix by Semyon Dyatlov)”, Invent. Math., 194 (2013), 381–513, arXiv: 1012.4391 | DOI | MR | Zbl

[9] Wunsch J., Zworski M., “Resolvent estimates for normally hyperbolic trapped sets”, Ann. Henri Poincaré, 12 (2011), 1349–1385, arXiv: 1003.4640 | DOI | MR | Zbl