Mots-clés : polygon equations, simplex equations, cocycle equations
@article{SIGMA_2024_20_a50,
author = {Folkert M\"uller-Hoissen},
title = {On the {Structure} of {Set-Theoretic} {Polygon} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a50/}
}
Folkert Müller-Hoissen. On the Structure of Set-Theoretic Polygon Equations. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a50/
[1] Baaj S., Skandalis G., “Unitaires multiplicatifs et dualité pour les produits croisés de $C^*$-algèbres”, Ann. Sci. École Norm. Sup. (4), 26 (1993), 425–488 | DOI | MR | Zbl
[2] Baratin A., Freidel L., “A 2-categorical state sum model”, J. Math. Phys., 56 (2015), 011705, 18 pp., arXiv: 1409.3526 | DOI | MR | Zbl
[3] Barrett J.W., Crane L., “An algebraic interpretation of the Wheeler–DeWitt equation”, Classical Quantum Gravity, 14 (1997), 2113–2121, arXiv: gr-qc/9609030 | DOI | MR | Zbl
[4] Biedenharn L.C., Louck J.D., Angular momentum in quantum physics. Theory and application, Encycl. Math. Appl., 8, Addison-Wesley Publishing Co., Reading, MA, 1981 | DOI | MR | Zbl
[5] Catino F., Mazzotta M., Miccoli M.M., “Set-theoretical solutions of the pentagon equation on groups”, Comm. Algebra, 48 (2020), 83–92, arXiv: 1902.04310 | DOI | MR | Zbl
[6] Catino F., Mazzotta M., Stefanelli P., “Set-theoretical solutions of the Yang–Baxter and pentagon equations on semigroups”, Semigroup Forum, 101 (2020), 259–284, arXiv: 1910.05393 | DOI | MR | Zbl
[7] Colazzo I., Jespers E., Kubat L., “Set-theoretic solutions of the pentagon equation”, Commun. Math. Phys., 380 (2020), 1003–1024, arXiv: 2004.04028 | DOI | MR | Zbl
[8] Crane L., Frenkel I.B., “Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases”, J. Math. Phys., 35 (1994), 5136–5154, arXiv: hep-th/9405183 | DOI | MR | Zbl
[9] Davydov A.A., “Pentagon equation and matrix bialgebras”, Comm. Algebra, 29 (2001), 2627–2650, arXiv: math.QA/0001095 | DOI | MR | Zbl
[10] Dimakis A., Korepanov I.G., “Grassmannian-parameterized solutions to direct-sum polygon and simplex equations”, J. Math. Phys., 62 (2021), 051701, 17 pp., arXiv: 2009.02352 | DOI | MR | Zbl
[11] Dimakis A., Müller-Hoissen F., “KP line solitons and Tamari lattices”, J. Phys. A, 44 (2011), 025203, 49 pp., arXiv: 1009.1886 | DOI | MR | Zbl
[12] Dimakis A., Müller-Hoissen F., “KP solitons, higher Bruhat and Tamari orders”, Associahedra, Tamari Lattices and Related Structures, Progr. Math., 299, Birkhäuser, Basel, 2012, 391–423, arXiv: 1110.3507 | DOI | MR | Zbl
[13] Dimakis A., Müller-Hoissen F., “Simplex and polygon equations”, SIGMA, 11 (2015), 042, 49 pp., arXiv: 1409.7855 | DOI | MR | Zbl
[14] Dimakis A., Müller-Hoissen F., “Matrix Kadomtsev–Petviashvili equation: tropical limit, Yang–Baxter and pentagon maps”, Theoret. and Math. Phys., 196 (2018), 1164–1173, arXiv: 1709.09848 | DOI | MR | Zbl
[15] Doliwa A., Sergeev S.M., “The pentagon relation and incidence geometry”, J. Math. Phys., 55 (2014), 063504, 21 pp., arXiv: 1108.0944 | DOI | MR | Zbl
[16] Edelman P.H., Reiner V., “The higher Stasheff–Tamari posets”, Mathematika, 43 (1996), 127–154 | DOI | MR | Zbl
[17] Etingof P., Schiffmann O., Lectures on quantum groups, Lect. Math. Phys., International Press, Boston, MA, 1998 | MR | Zbl
[18] Faddeev L.D., “Volkov pentagon for the modular quantum dilogarithm”, Funct. Anal. Appl., 45 (2011), 291–296, arXiv: 1201.6464 | DOI | MR | Zbl
[19] Faddeev L.D., Kashaev R.M., “Quantum dilogarithm”, Modern Phys. Lett. A, 9 (1994), 427–434, arXiv: hep-th/9310070 | DOI | MR | Zbl
[20] Gliozzi F., Tateo R., “ADE functional dilogarithm identities and integrable models”, Phys. Lett. B, 348 (1995), 84–88, arXiv: hep-th/9411203 | DOI | MR
[21] Grünbaum B., Configurations of points and lines, Grad. Stud. Math., 103, American Mathematical Society, Providence, RI, 2009 | DOI | MR | Zbl
[22] Jiang L., Liu M., “On set-theoretical solution of the pentagon equation”, Adv. Math. (China), 34 (2005), 331–337 | MR | Zbl
[23] Kapranov M.M., Voevodsky V.A., “Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results)”, Cahiers Topologie Géom. Différentielle Catég., 32 (1991), 11–27 | MR | Zbl
[24] Kashaev R.M., “Quantum dilogarithm as a $6j$-symbol”, Modern Phys. Lett. A, 9 (1994), 3757–3768, arXiv: hep-th/9411147 | DOI | MR | Zbl
[25] Kashaev R.M., “The Heisenberg double and the pentagon relation”, St. Petersburg Math. J., 8 (1997), 585–592, arXiv: q-alg/9503005 | MR
[26] Kashaev R.M., “On matrix generalizations of the dilogarithm”, Theoret. and Math. Phys., 118 (1999), 314–318 | DOI | MR | Zbl
[27] Kashaev R.M., “The pentagon equation and mapping class groups of surfaces with marked points”, Theoret. and Math. Phys., 123 (2000), 576–581 | DOI | MR | Zbl
[28] Kashaev R.M., “Fully noncommutative discrete Liouville equation”, Infinite Analysis 2010—Developments in Quantum Integrable Systems, RIMS Kôkyûroku Bessatsu, B28, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, 89–98 | MR
[29] Kashaev R.M., “On realizations of Pachner moves in 4d”, J. Knot Theory Ramifications, 24 (2015), 1541002, 13 pp., arXiv: 1504.01979 | DOI | MR | Zbl
[30] Kashaev R.M., Reshetikhin N., “Symmetrically factorizable groups and self-theoretical solutions of the pentagon equation”, Quantum Groups, Contemp. Math., 433, American Mathematical Society, Providence, RI, 2007, 267–279, arXiv: math.QA/0111171 | DOI | MR | Zbl
[31] Kashaev R.M., Sergeev S.M., “On pentagon, ten-term, and tetrahedron relations”, Comm. Math. Phys., 195 (1998), 309–319, arXiv: q-alg/9607032 | DOI | MR | Zbl
[32] Kassotakis P., “Matrix factorizations and pentagon maps”, Proc. A, 479 (2023), 20230276, 15 pp., arXiv: 2302.02889 | DOI | MR
[33] Kelly G.M., “On MacLane's conditions for coherence of natural associativities, commutativities, etc”, J. Algebra, 1 (1964), 397–402 | DOI | MR | Zbl
[34] Korepanov I.G., “Algebraic formulas whose structure imitates Pachner moves and new types of acyclic complexes”, Topology Atlas Invited Contributions, 7 (2002), 3 pp., arXiv: math.GT/0312458
[35] Korepanov I.G., Quadratic heptagon cohomology, arXiv: 2110.08780
[36] Korepanov I.G., “Heptagon relation in a direct sum”, St. Petersburg Math. J., 33 (2022), 675–686, arXiv: 2003.10335 | DOI | MR | Zbl
[37] Korepanov I.G., Odd-gon relations and their cohomology, arXiv: 2205.00405
[38] Kustermans J., Vaes S., “The operator algebra approach to quantum groups”, Proc. Natl. Acad. Sci. USA, 97 (2000), 547–552 | DOI | MR | Zbl
[39] Lickorish W.B.R., “Simplicial moves on complexes and manifolds”, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 299–320, arXiv: math.GT/9911256 | DOI | MR | Zbl
[40] Mac Lane S., “Natural associativity and commutativity”, Rice Univ. Stud., 49 (1963), 28–46 | MR | Zbl
[41] Maillet J., “On pentagon and tetrahedron equationsy”, St. Petersburg Math. J., 6 (1995), 375–383, arXiv: hep-th/9312037 | MR
[42] Manin Yu.I., Schechtman V.V., “Arrangements of real hyperplanes and Zamolodchikov equations”, Group Theoretical Methods in Physics (Yurmala, 1985), v. I, VNU Science Press, Utrecht, 1986, 151–165 | MR
[43] Manin Yu.I., Schechtman V.V., “Higher Bruhat orders, related to the symmetric group”, Funct. Anal. Appl., 20 (1986), 148–150 | DOI | Zbl
[44] Markl M., “Models for operads”, Comm. Algebra, 24 (1996), 1471–1500, arXiv: hep-th/9411208 | DOI | MR | Zbl
[45] Mazzotta M., “Idempotent set-theoretical solutions of the pentagon equation”, Boll. Unione Mat. Ital., 17 (2024), 457–469, arXiv: 2301.01643 | DOI | MR
[46] Mazzotta M., Pérez-Calabuig V., Stefanelli P., “Set-theoretical solutions of the pentagon equation on Clifford semigroups”, Semigroup Forum, 108 (2024), 413–431, arXiv: 2301.09944 | DOI | MR
[47] Mihalache S., Suzuki S., Terashima Y., Quantum invariants of closed framed 3-manifolds based on ideal triangulations, arXiv: 2209.07378
[48] Militaru G., “Heisenberg double, pentagon equation, structure and classification of finite-dimensional Hopf algebras”, J. London Math. Soc. (2), 69 (2004), 44–64, arXiv: math.QA/0009141 | DOI | MR | Zbl
[49] Moore G., Seiberg N., “Classical and quantum conformal field theory”, Comm. Math. Phys., 123 (1989), 177–254 | DOI | MR | Zbl
[50] Pachner U., “P.L homeomorphic manifolds are equivalent by elementary shellings”, European J. Combin., 12 (1991), 129–145 | DOI | MR | Zbl
[51] Ponzano G., Regge T., “Semiclassical limit of Racah coefficients”, Spectroscopic and Group Theoretical Methods in Physics, North-Holland, Amsterdam, 1968, 1–58
[52] Rogers L.J., “On function sum theorems connected with the series $\sum_{n=1}^\infty \frac{x^n}{n^2}$”, Proc. London Math. Soc. (2), 4 (1907), 169–189 | DOI | MR
[53] Sergeev S., On pentagon equation, tetrahedron equation, evolution and integrals of motion, arXiv: 2303.17730
[54] Skandalis G., “Operator algebras and duality”, Proceedings of the International Congress of Mathematicians (Kyoto, 1990), v. I, II, Mathematical Society of Japan, Tokyo, 1991, 997–1009 | MR | Zbl
[55] Stasheff J., “How I ‘met’ Dov Tamari, in Associahedra, Tamari Lattices and Related Structures”, Progr. Math., 299, Birkhäuser, Basel, 2012, 45–63 | DOI | MR | Zbl
[56] Stasheff J.D., “Homotopy associativity of $H$-spaces. I”, Trans. Amer. Math. Soc., 108 (1963), 275–292 | DOI | MR | Zbl
[57] Street R., “The algebra of oriented simplexes”, J. Pure Appl. Algebra, 49 (1987), 283–335 | DOI | MR | Zbl
[58] Street R., “Fusion operators and cocycloids in monoidal categories”, Appl. Categ. Structures, 6 (1998), 177–191 | DOI | MR | Zbl
[59] Suzuki S., “The universal quantum invariant and colored ideal triangulations”, Algebr. Geom. Topol., 18 (2018), 3363–3402, arXiv: 1612.08262 | DOI | MR | Zbl
[60] Takesaki M., “Duality and von Neumann algebras”, Bull. Amer. Math. Soc., 77 (1971), 553–557 | DOI | MR | Zbl
[61] Takesaki M., “Duality and von Neumann algebras”, Lectures on Operator Algebras, Lecture Notes in Math., 247, Springer, Berlin, 1972, 665–779 | DOI | MR
[62] Timmermann T., An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond, EMS Textb. Math., European Mathematical Society (EMS), Zürich, 2008 | DOI | MR | Zbl
[63] Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Stud. Math., 18, Walter de Gruyter Co., Berlin, 1994 | DOI | MR | Zbl
[64] Turaev V.G., Viro O.Ya., “State sum invariants of $3$-manifolds and quantum $6j$-symbols”, Topology, 31 (1992), 865–902 | DOI | MR | Zbl
[65] Volkov A.Yu., “Beyond the “pentagon identity””, Lett. Math. Phys., 39 (1997), 393–397, arXiv: q-alg/9603003 | DOI | MR | Zbl
[66] Volkov A.Yu., “Pentagon identity revisited”, Int. Math. Res. Not., 2012 (2012), 4619–4624, arXiv: 1104.2267 | DOI | MR | Zbl
[67] Williams N.J., “The first higher Stasheff–Tamari orders are quotients of the higher Bruhat orders”, Electron. J. Combin., 30 (2023), 1.29, 38 pp., arXiv: 2012.10371 | DOI | MR
[68] Wirth J., Stasheff J., “Homotopy transition cocycles”, J. Homotopy Relat. Struct., 1 (2006), 273–283, arXiv: math.AT/0609220 | MR | Zbl
[69] Woronowicz S.L., “From multiplicative unitaries to quantum groups”, Internat. J. Math., 7 (1996), 127–149 | DOI | MR | Zbl
[70] Zakrzewski S., “Poisson Lie groups and pentagonal transformations”, Lett. Math. Phys., 24 (1992), 13–19 | DOI | MR | Zbl