Moving Frames: Difference and Differential-Difference Lagrangians
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper develops moving frame theory for partial difference equations and for differential-difference equations with one continuous independent variable. In each case, the theory is applied to the invariant calculus of variations and the equivariant formulation of the conservation laws arising from Noether's theorem. The differential-difference theory is not merely an amalgam of the differential and difference theories, but has additional features that reflect the need for the group action to preserve the prolongation structure. Projectable moving frames are introduced; these cause the invariant derivative operator to commute with shifts in the discrete variables. Examples include a Toda-type equation and a method of lines semi-discretization of the nonlinear Schrödinger equation.
Keywords: moving frames, difference equations, differential-difference equations, Noether's theorem.
Mots-clés : variational calculus
@article{SIGMA_2024_20_a5,
     author = {Lewis C. White and Peter E. Hydon},
     title = {Moving {Frames:} {Difference} and {Differential-Difference} {Lagrangians}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a5/}
}
TY  - JOUR
AU  - Lewis C. White
AU  - Peter E. Hydon
TI  - Moving Frames: Difference and Differential-Difference Lagrangians
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a5/
LA  - en
ID  - SIGMA_2024_20_a5
ER  - 
%0 Journal Article
%A Lewis C. White
%A Peter E. Hydon
%T Moving Frames: Difference and Differential-Difference Lagrangians
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a5/
%G en
%F SIGMA_2024_20_a5
Lewis C. White; Peter E. Hydon. Moving Frames: Difference and Differential-Difference Lagrangians. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a5/

[1] Boutin M., “On orbit dimensions under a simultaneous Lie group action on $n$ copies of a manifold”, J. Lie Theory, 12 (2002), 191–203, arXiv: math-ph/0009021 | MR | Zbl

[2] Fels M., Olver P.J., “Moving coframes. I A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR

[3] Fels M., Olver P.J., “Moving coframes. II Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl

[4] Gonçalves T.M.N., Mansfield E.L., “On moving frames and Noether's conservation laws”, Stud. Appl. Math., 128 (2012), 1–29, arXiv: 1006.4660 | DOI | MR | Zbl

[5] Gonçalves T.M.N., Mansfield E.L., “Moving frames and conservation laws for Euclidean invariant Lagrangians”, Stud. Appl. Math., 130 (2013), 134–166, arXiv: 1106.3964 | DOI | MR | Zbl

[6] Gonçalves T.M.N., Mansfield E.L., “Moving frames and Noether's conservation laws – the general case”, Forum Math. Sigma, 4 (2016), e29, 55 pp., arXiv: 1306.0847 | DOI | MR | Zbl

[7] Hydon P.E., Difference equations by differential equation methods, Cambridge Monogr. Appl. Comput. Math., 27, Cambridge University Press, Cambridge, 2014 | DOI | MR | Zbl

[8] Hydon P.E., Mansfield E.L., “A variational complex for difference equations”, Found. Comput. Math., 4 (2004), 187–217 | DOI | MR | Zbl

[9] Kim P., Olver P.J., “Geometric integration via multi-space”, Regul. Chaotic Dyn., 9 (2004), 213–226 | DOI | MR | Zbl

[10] Kogan I.A., Olver P.J., “Invariant Euler–Lagrange equations and the invariant variational bicomplex”, Acta Appl. Math., 76 (2003), 137–193 | DOI | MR | Zbl

[11] Kuperschmidt B.A., Discrete Lax equations and differential-difference calculus, Astérisque, 123, 1985, 212 pp. | MR | Zbl

[12] Mansfield E.L., A practical guide to the invariant calculus, v. 26, Cambridge Monogr. Appl. Comput. Math., Cambridge University Press, Cambridge, 2010 | DOI | MR | Zbl

[13] Mansfield E.L., Hydon P.E., “Difference forms”, Found. Comput. Math., 8 (2008), 427–467 | DOI | MR | Zbl

[14] Mansfield E.L., Marí Beffa G., Wang J.P., “Discrete moving frames and discrete integrable systems”, Found. Comput. Math., 13 (2013), 545–582, arXiv: 1212.5299 | DOI | MR | Zbl

[15] Mansfield E.L., Rojo-Echeburúa A., Hydon P.E., Peng L., “Moving frames and Noether's finite difference conservation laws I”, Trans. Math. Appl., 3 (2019), tnz004, 47 pp., arXiv: 1804.00317 | DOI | MR | Zbl

[16] Mansfield E.L., Rojo-Echeburúa A., Moving frames and {N}oether's finite difference conservation laws {II}, Trans. Math. Appl., 3 (2019), tnz005, 26 pp., arXiv: 1808.03606 | DOI | MR | Zbl

[17] Marí Beffa G., Mansfield E.L., “Discrete moving frames on lattice varieties and lattice-based multispaces”, Found. Comput. Math., 18 (2018), 181–247 | DOI | MR | Zbl

[18] Olver P.J., Applications of Lie groups to differential equations, Grad. Texts in Math., 107, 2nd ed., Springer, New York, 1993 | DOI | MR | Zbl

[19] Olver P.J., “Geometric foundations of numerical algorithms and symmetry”, Appl. Algebra Engrg. Comm. Comput., 11 (2001), 417–436 | DOI | MR | Zbl

[20] Olver P.J., Sapiro G., Tannenbaum A., “Differential invariant signatures and flows in computer vision: A symmetry group approach”, Geometry-Driven Diffusion in Computer Vision, Comput. Imaging Vis., 1, ed. B.M. ter Haar Romeny, Kluwer Academic Publishers, Dordrecht, 1994, 255–306 | DOI | MR

[21] Peng L., Hydon P.E., “Transformations, symmetries and Noether theorems for differential-difference equations”, Proc. A., 478 (2022), 20210944, 17 pp., arXiv: 2112.06030 | DOI | MR