Mots-clés : variational calculus
@article{SIGMA_2024_20_a5,
author = {Lewis C. White and Peter E. Hydon},
title = {Moving {Frames:} {Difference} and {Differential-Difference} {Lagrangians}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a5/}
}
Lewis C. White; Peter E. Hydon. Moving Frames: Difference and Differential-Difference Lagrangians. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a5/
[1] Boutin M., “On orbit dimensions under a simultaneous Lie group action on $n$ copies of a manifold”, J. Lie Theory, 12 (2002), 191–203, arXiv: math-ph/0009021 | MR | Zbl
[2] Fels M., Olver P.J., “Moving coframes. I A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR
[3] Fels M., Olver P.J., “Moving coframes. II Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[4] Gonçalves T.M.N., Mansfield E.L., “On moving frames and Noether's conservation laws”, Stud. Appl. Math., 128 (2012), 1–29, arXiv: 1006.4660 | DOI | MR | Zbl
[5] Gonçalves T.M.N., Mansfield E.L., “Moving frames and conservation laws for Euclidean invariant Lagrangians”, Stud. Appl. Math., 130 (2013), 134–166, arXiv: 1106.3964 | DOI | MR | Zbl
[6] Gonçalves T.M.N., Mansfield E.L., “Moving frames and Noether's conservation laws – the general case”, Forum Math. Sigma, 4 (2016), e29, 55 pp., arXiv: 1306.0847 | DOI | MR | Zbl
[7] Hydon P.E., Difference equations by differential equation methods, Cambridge Monogr. Appl. Comput. Math., 27, Cambridge University Press, Cambridge, 2014 | DOI | MR | Zbl
[8] Hydon P.E., Mansfield E.L., “A variational complex for difference equations”, Found. Comput. Math., 4 (2004), 187–217 | DOI | MR | Zbl
[9] Kim P., Olver P.J., “Geometric integration via multi-space”, Regul. Chaotic Dyn., 9 (2004), 213–226 | DOI | MR | Zbl
[10] Kogan I.A., Olver P.J., “Invariant Euler–Lagrange equations and the invariant variational bicomplex”, Acta Appl. Math., 76 (2003), 137–193 | DOI | MR | Zbl
[11] Kuperschmidt B.A., Discrete Lax equations and differential-difference calculus, Astérisque, 123, 1985, 212 pp. | MR | Zbl
[12] Mansfield E.L., A practical guide to the invariant calculus, v. 26, Cambridge Monogr. Appl. Comput. Math., Cambridge University Press, Cambridge, 2010 | DOI | MR | Zbl
[13] Mansfield E.L., Hydon P.E., “Difference forms”, Found. Comput. Math., 8 (2008), 427–467 | DOI | MR | Zbl
[14] Mansfield E.L., Marí Beffa G., Wang J.P., “Discrete moving frames and discrete integrable systems”, Found. Comput. Math., 13 (2013), 545–582, arXiv: 1212.5299 | DOI | MR | Zbl
[15] Mansfield E.L., Rojo-Echeburúa A., Hydon P.E., Peng L., “Moving frames and Noether's finite difference conservation laws I”, Trans. Math. Appl., 3 (2019), tnz004, 47 pp., arXiv: 1804.00317 | DOI | MR | Zbl
[16] Mansfield E.L., Rojo-Echeburúa A., Moving frames and {N}oether's finite difference conservation laws {II}, Trans. Math. Appl., 3 (2019), tnz005, 26 pp., arXiv: 1808.03606 | DOI | MR | Zbl
[17] Marí Beffa G., Mansfield E.L., “Discrete moving frames on lattice varieties and lattice-based multispaces”, Found. Comput. Math., 18 (2018), 181–247 | DOI | MR | Zbl
[18] Olver P.J., Applications of Lie groups to differential equations, Grad. Texts in Math., 107, 2nd ed., Springer, New York, 1993 | DOI | MR | Zbl
[19] Olver P.J., “Geometric foundations of numerical algorithms and symmetry”, Appl. Algebra Engrg. Comm. Comput., 11 (2001), 417–436 | DOI | MR | Zbl
[20] Olver P.J., Sapiro G., Tannenbaum A., “Differential invariant signatures and flows in computer vision: A symmetry group approach”, Geometry-Driven Diffusion in Computer Vision, Comput. Imaging Vis., 1, ed. B.M. ter Haar Romeny, Kluwer Academic Publishers, Dordrecht, 1994, 255–306 | DOI | MR
[21] Peng L., Hydon P.E., “Transformations, symmetries and Noether theorems for differential-difference equations”, Proc. A., 478 (2022), 20210944, 17 pp., arXiv: 2112.06030 | DOI | MR