Generalized Yang Poisson Models on Canonical Phase Space
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the generalized Yang Poisson models. We construct generalizations of the Yang Poisson algebra related to $\mathfrak{o}(1,5)$ algebra discussed by Meljanac and Mignemi (2023). The exact realizations of this generalized algebra on canonical phase space are presented and the corresponding differential equations are solved in simple cases. Furthermore, we discuss the Poisson algebras related to $\mathfrak{o}(3,3)$ and $\mathfrak{o}(2,4)$ algebras.
Keywords: generalized Yang Poisson model, realizations.
Mots-clés : Yang Poisson model
@article{SIGMA_2024_20_a48,
     author = {Tea Martini\'c Bila\'c and Stjepan Meljanac and Salvatore Mignemi},
     title = {Generalized {Yang} {Poisson} {Models} on {Canonical} {Phase} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a48/}
}
TY  - JOUR
AU  - Tea Martinić Bilać
AU  - Stjepan Meljanac
AU  - Salvatore Mignemi
TI  - Generalized Yang Poisson Models on Canonical Phase Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a48/
LA  - en
ID  - SIGMA_2024_20_a48
ER  - 
%0 Journal Article
%A Tea Martinić Bilać
%A Stjepan Meljanac
%A Salvatore Mignemi
%T Generalized Yang Poisson Models on Canonical Phase Space
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a48/
%G en
%F SIGMA_2024_20_a48
Tea Martinić Bilać; Stjepan Meljanac; Salvatore Mignemi. Generalized Yang Poisson Models on Canonical Phase Space. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a48/

[1] Banerjee R., Kumar K., Roychowdhury D., “Symmetries of {S}nyder–de {S}itter space and relativistic particle dynamics”, J. High Energy Phys., 2011:3 (2011), 060, 14 pp., arXiv: 1101.2021 | DOI | MR | Zbl

[2] Born M., “Reciprocity theory of elementary particles”, Rev. Mod. Phys., 21 (1949), 463–473 | DOI | Zbl

[3] Guo H.Y., Huang C.G., Wu H.T., “Yang's model as triply special relativity and the {S}nyder's model–de {S}itter special relativity duality”, Phys. Lett. B, 663 (2008), 270–274, arXiv: 0801.1146 | DOI | MR | Zbl

[4] Khrushchev V.V., Leznov A.N., “Relativistically invariant Lie algebras for kinematic observables in quantum space-time”, Gravit. Cosmol., 9 (2003), 159–162, arXiv: hep-th/0207082 | MR

[5] Kowalski-Glikman J., Smolin L., “Triply special relativity”, Phys. Rev. D, 70 (2004), 065020, 6 pp., arXiv: hep-th/0406276 | DOI | MR

[6] Lukierski J., Meljanac S., Mignemi S., Pachoł A., “Quantum perturbative solutions of extended {S}nyder and {Y}ang models with spontaneous symmetry breaking”, Phys. Lett. B, 847 (2023), 138261, 6 pp., arXiv: 2212.02316 | DOI | MR

[7] Martinić Bilać T., Meljanac S., “Realizations of the extended {S}nyder model”, SIGMA, 19 (2023), 065, 11 pp., arXiv: 2306.10609 | DOI | MR

[8] Martinić Bilać T., Meljanac S., Mignemi S., “Hermitian realizations of the {Y}ang model”, J. Math. Phys., 64 (2023), 122302, 9 pp., arXiv: 2305.04013 | DOI | MR | Zbl

[9] Martinić Bilać T., Meljanac S., Mignemi S., Realizations and star-product of doubly $\kappa$-deformed {Y}ang models, arXiv: 2404.01792

[10] Meljanac S., Mignemi S., “Generalizations of {S}nyder model to curved spaces”, Phys. Lett. B, 833 (2022), 137289, 6 pp., arXiv: 2206.04772 | DOI | MR | Zbl

[11] Meljanac S., Mignemi S., “Noncommutative {Y}ang model and its generalizations”, J. Math. Phys., 64 (2023), 023505, 9 pp., arXiv: 2211.11755 | DOI | MR | Zbl

[12] Meljanac S., Mignemi S., “Realizations of the {Y}ang–{P}oisson model on canonical phase space”, Internat. J. Modern Phys. A, 38 (2023), 2350182, 10 pp., arXiv: 2307.09828 | DOI | MR

[13] Meljanac S., Štrajn R., “Deformed quantum phase spaces, realizations, star products and twists”, SIGMA, 18 (2022), 022, 20 pp., arXiv: 2112.12038 | DOI | MR | Zbl

[14] Mignemi S., “The {S}nyder–de {S}itter model from six dimensions”, Classical Quantum Gravity, 26 (2009), 245020, 9 pp., arXiv: 0807.2186 | DOI | MR | Zbl

[15] Mignemi S., “Classical and quantum mechanics of the nonrelativistic {S}nyder model”, Phys. Rev. D, 84 (2011), 025021, 11 pp., arXiv: 1104.0490 | DOI | MR

[16] Mignemi S., “Classical and quantum mechanics of the nonrelativistic {S}nyder model in curved space”, Classical Quantum Gravity, 29 (2012), 215019, 19 pp., arXiv: 1110.0201 | DOI | MR | Zbl

[17] Snyder H.S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl

[18] Yang C.N., “On quantized space-time”, Phys. Rev., 72 (1947), 874 | DOI | MR | Zbl