Mots-clés : orthogonal polynomials.
@article{SIGMA_2024_20_a45,
author = {Simone Floreani and Sabine Jansen and Stefan Wagner},
title = {Intertwinings for {Continuum} {Particle} {Systems:} an {Algebraic} {Approach}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a45/}
}
TY - JOUR AU - Simone Floreani AU - Sabine Jansen AU - Stefan Wagner TI - Intertwinings for Continuum Particle Systems: an Algebraic Approach JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a45/ LA - en ID - SIGMA_2024_20_a45 ER -
%0 Journal Article %A Simone Floreani %A Sabine Jansen %A Stefan Wagner %T Intertwinings for Continuum Particle Systems: an Algebraic Approach %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a45/ %G en %F SIGMA_2024_20_a45
Simone Floreani; Sabine Jansen; Stefan Wagner. Intertwinings for Continuum Particle Systems: an Algebraic Approach. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a45/
[1] Accardi L., Boukas A., “Quantum probability, renormalization and infinite-dimensional $\ast$-Lie algebras”, SIGMA, 5 (2009), 056, 31 pp., arXiv: 0905.4491 | DOI | MR | Zbl
[2] Accardi L., Franz U., Skeide M., “Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras”, Comm. Math. Phys., 228 (2002), 123–150 | DOI | MR | Zbl
[3] Araki H., “Factorizable representation of current algebra. Non commutative extension of the Lévy–Kinchin formula and cohomology of a solvable group with values in a Hilbert space”, Publ. Res. Inst. Math. Sci., 5 (1969), 361–422 | DOI | MR
[4] Bargmann V., “Irreducible unitary representations of the Lorentz group”, Ann. of Math., 48 (1947), 568–640 | DOI | MR | Zbl
[5] Bogachev V.I., Measure theory, v. I, Springer, Berlin, 2007 | DOI | MR | Zbl
[6] Boukas A., “An example of a quantum exponential process”, Monatsh. Math., 112 (1991), 209–215 | DOI | MR | Zbl
[7] Carinci G., Franceschini C., Giardinà C., Groenevelt W., Redig F., “Orthogonal dualities of Markov processes and unitary symmetries”, SIGMA, 15 (2019), 053, 27 pp., arXiv: 1812.08553 | DOI | MR | Zbl
[8] Carinci G., Giardinà C., Giberti C., Redig F., “Dualities in population genetics: a fresh look with new dualities”, Stochastic Process. Appl., 125 (2015), 941–969, arXiv: 1302.3206 | DOI | MR | Zbl
[9] Carinci G., Giardinà C., Redig F., “Consistent particle systems and duality”, Electron. J. Probab., 26 (2021), 125, 31 pp., arXiv: 1907.10583 | DOI | MR | Zbl
[10] Carinci G., Giardinà C., Redig F., Sasamoto T., “Asymmetric stochastic transport models with $\mathcal{U}_q(\mathfrak{su}(1,1))$ symmetry”, J. Stat. Phys., 163 (2016), 239–279, arXiv: 1507.01478 | DOI | MR | Zbl
[11] Carinci G., Giardinà C., Redig F., Sasamoto T., “A generalized asymmetric exclusion process with $U_q(\mathfrak{sl}_2)$ stochastic duality”, Probab. Theory Related Fields, 166 (2016), 887–933, arXiv: 1407.3367 | DOI | MR | Zbl
[12] Dawson D.A., “Measure-valued Markov processes”, École d'Été de Probabilités de Saint-Flour XXI—1991, Lecture Notes in Math., 1541, Springer, Berlin, 1993, 1–260 | DOI | MR | Zbl
[13] Etheridge A., “Evolution in fluctuating populations”, Mathematical Statistical Physics, Elsevier, Amsterdam, 2006, 489–545 | DOI | MR | Zbl
[14] Etheridge A.M., An introduction to superprocesses, Univ. Lecture Ser., 20, American Mathematical Society, Providence, RI, 2000 | DOI | MR | Zbl
[15] Floreani S., Jansen S., Redig F., Wagner S., “Intertwining and duality for consistent Markov processes”, Electron. J. Probab., 29 (2024), 1–34, arXiv: 2112.11885 | DOI | MR
[16] Floreani S., Jansen S., Wagner S., Representations of the $\mathfrak{su}(1,1)$ current algebra, arXiv: 2402.07493
[17] Floreani S., Redig F., Sau F., “Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations”, Ann. Inst. Henri Poincaré Probab. Stat., 58 (2022), 220–247, arXiv: 2007.08272 | DOI | MR | Zbl
[18] Franceschini C., Giardinà C., “Stochastic duality and orthogonal polynomials”, Sojourns in Probability Theory and Statistical Physics, a Festschrift for Charles M. Newman, v. III, Springer Proc. Math. Stat., 300, Interacting Particle Systems and Random Walks, Springer, Singapore, 2019, 187–214, arXiv: 1701.09115 | DOI | MR | Zbl
[19] Giardinà C., Kurchan J., Redig F., Vafayi K., “Duality and hidden symmetries in interacting particle systems”, J. Stat. Phys., 135 (2009), 25–55, arXiv: 0810.1202 | DOI | MR | Zbl
[20] Giardinà C., Redig F., Vafayi K., “Correlation inequalities for interacting particle systems with duality”, J. Stat. Phys., 141 (2010), 242–263 | DOI | MR | Zbl
[21] Karlin S., McGregor J., “On a genetics model of Moran”, Proc. Cambridge Philos. Soc., 58 (1962), 299–311 | DOI | MR
[22] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010 | DOI | MR | Zbl
[23] Kozubowski T.J., Podgórski K., “Distributional properties of the negative binomial Lévy process”, Probab. Math. Statist., 29 (2009), 43–71 | MR | Zbl
[24] Kuan J., “Stochastic duality of ASEP with two particle types via symmetry of quantum groups of rank two”, J. Phys. A, 49 (2016), 115002, 29 pp. | DOI | MR | Zbl
[25] Kuan J., “An algebraic construction of duality functions for the stochastic $\mathcal{U}_q\bigl( A_n^{(1)}\bigr)$ vertex model and its degenerations”, Comm. Math. Phys., 359 (2018), 121–187, arXiv: 1701.04468 | DOI | MR | Zbl
[26] Last G., “Stochastic analysis for Poisson processes”, Stochastic Analysis for Poisson Point Processes, Bocconi Springer Ser., 7, Bocconi University Press, 2016, 1–36, arXiv: 1405.4416 | DOI | MR | Zbl
[27] Last G., Penrose M., Lectures on the Poisson process, IMS Textb., 7, Cambridge University Press, Cambridge, 2018 | MR | Zbl
[28] Liggett T.M., Interacting particle systems, Classics Math., Springer, Berlin, 2005 | DOI | MR | Zbl
[29] Lytvynov E., “Orthogonal decompositions for Lévy processes with an application to the gamma, Pascal, and Meixner processes”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6 (2003), 73–102, arXiv: math.PR/0204087 | DOI | MR | Zbl
[30] Lytvynov E., “Polynomials of Meixner's type in infinite dimensions–Jacobi fields and orthogonality measures”, J. Funct. Anal., 200 (2003), 118–149, arXiv: math.CA/0203026 | DOI | MR | Zbl
[31] Matthes K., Warmuth W., Mecke J., “Bemerkungen zu einer Arbeit: “Integral and differential characterizations of the Gibbs process””, Math. Nachr., 88 (1979), 117–127 | DOI | MR | Zbl
[32] Meyer P.-A., Quantum probability for probabilists, Lecture Notes in Math., 1538, Springer, Berlin, 1993 | DOI | MR | Zbl
[33] Moran P.A.P., “Random processes in genetics”, Proc. Cambridge Philos. Soc., 54 (1958), 60–71 | DOI | MR | Zbl
[34] Mueller C., “Stochastic PDE from the point of view of particle systems and duality”, Stochastic Analysis: a Series of Lectures, Progr. Probab., 68, Birkhäuser, Basel, 2015, 271–295 | DOI | MR | Zbl
[35] Rafler M., Gaussian loop- and Pólya processes: a point process approach, Ph.D. Thesis, Universität Potsdam, 2009 https://publishup.uni-potsdam.de/frontdoor/index/index/docId/3841
[36] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Academic Press, Sad New York, 1980 | MR | Zbl
[37] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York, 1975 | MR | Zbl
[38] Schmüdgen K., Unbounded self-adjoint operators on Hilbert space, Grad. Texts in Math., 265, Springer, Dordrecht, 2012 | DOI | MR | Zbl
[39] Serfozo R.F., “Point processes”, Stochastic Models, Handbooks Oper. Res. Management Sci., 2, North-Holland, Amsterdam, 1990, 1–93 | DOI | MR
[40] Shiga T., “A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes”, J. Math. Kyoto Univ., 30 (1990), 245–279 | DOI | MR | Zbl
[41] Śniady P., “Quadratic bosonic and free white noises”, Comm. Math. Phys., 211 (2000), 615–628, arXiv: math-ph/0303048 | DOI | MR | Zbl
[42] Sturm A., Swart J.M., Völlering F., “The algebraic approach to duality: an introduction”, Genealogies of Interacting Particle Systems, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 38, World Scientific Publishing, Hackensack, NJ, 2020, 81–150, arXiv: 1802.07150 | DOI | MR | Zbl
[43] Talagrand M., What is a quantum field theory? A first introduction for mathematicians, Cambridge University Press, Cambridge, 2022 | DOI | MR | Zbl
[44] Wagner S., “Orthogonal intertwiners for infinite particle systems in the continuum”, Stochastic Process. Appl., 168 (2024), 104269, 18 pp., arXiv: 2305.03367 | DOI | MR | Zbl