@article{SIGMA_2024_20_a44,
author = {Roman G. Smirnov and Kunpeng Wang},
title = {The {Cobb{\textendash}Douglas} {Production} {Function} and the {Old} {Bowley's} {Law}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a44/}
}
Roman G. Smirnov; Kunpeng Wang. The Cobb–Douglas Production Function and the Old Bowley's Law. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a44/
[1] Aghion P., Howitt P., The economics of growth, The MIT Press, Cambridge, MA, 2008
[2] Aniţa S., Capasso V., Kunze H., La Torre D., “Optimal control and long-run dynamics for a spatial economic growth model with physical capital accumulation and pollution diffusion”, Appl. Math. Lett., 26 (2013), 908–912 | DOI | MR | Zbl
[3] Antràs P., “Is the US aggregate production function Cobb–Douglas? New estimates of the elasticity of substitution”, Contrib. Macroecon., 4 (2004), 1–34 | DOI
[4] Beaudreau B.C., “The economies of speed $KE = 1/2mv^2$ and the productivity slowdown”, Energy, 124 (2017), 100–113 | DOI
[5] Bowley A.L., Wages in the United Kingdom in the nineteenth century: Notes for the use of students of social and economic questions, Cambridge University Press, Cambridge, 1900
[6] Bowley A.L., Wages and income in the United Kingdom since 1860, Cambridge University Press, Cambridge, 1937
[7] Capasso V., Engbers R., La Torre D., “Population dynamics in a spatial Solow model with a convex-concave production function”, Mathematical and Statistical Methods for Actuarial Sciences and Finance, Springer, Dordrecht, 2012, 61–68 | DOI | MR | Zbl
[8] Cherevatskyi D., Smirnov R.G., “A novel approach to characterizing the relationship between economic growth and energy consumption”, Econ. Ukraine, 2021, no. 12, 57–70 | DOI
[9] Cobb C.W., Douglas P.H., “A theory of production”, Amer. Econ. Rev., 18, 1928, 139–165
[10] Cochran C.M., McLenaghan R.G., Smirnov R.G., “Equivalence problem for the orthogonal separable webs in 3-dimensional hyperbolic space”, J. Math. Phys., 58 (2017), 063513, 43 pp. | DOI | MR | Zbl
[11] Douglas P.H., “The Cobb–Douglas production function once again: Its history, its testing, and some new empirical values”, J. Polit. Econ., 84 (1976), 903–916 | DOI
[12] Engbers R., Burger M., Capasso V., “Inverse problems in geographical economics: parameter identification in the spatial Solow model”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130402, 13 pp. | DOI | MR | Zbl
[13] Fang F., “The symmetry approach on economic systems”, Chaos Solitons Fractals, 7 (1996), 2247–2257 | DOI | MR | Zbl
[14] Fels M., Olver P.J., “Moving coframes. I A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR
[15] Fels M., Olver P.J., “Moving coframes. II Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[16] Fokas A.S., Olver P.J., Rosenau P., “A plethora of integrable bi-Hamiltonian equations”, Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser, Boston, MA, 1997, 93–101 | DOI | MR | Zbl
[17] Gechert S., Havranek T., Irsova Z., Kolcunova D., Death to the Cobb–Douglas production function? A quantitative survey of the capital-labor substitution elasticity, EconStor Preprints, ZBW, Leibniz Information Centre for Economics, 2009
[18] Holling C.S., “Some characteristics of simple types of predation and parasitism”, The Canadian Entomologist, Cambridge University Press, Canada, 1959, 385–398 | DOI
[19] Horwood J.T., McLenaghan R.G., Smirnov R.G., “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space”, Comm. Math. Phys., 259 (2005), 679–709, arXiv: math-ph/0605023 | DOI | MR | Zbl
[20] Humphrey T.M., “Algebraic production functions and their uses before Cobb–Douglas”, FRB Richmond Econ. Quart., 83, 1997, 51–83
[21] Kamran N., Olver P.J., Tenenblat K., “Local symplectic invariants for curves”, Commun. Contemp. Math., 11 (2009), 165–183 | DOI | MR | Zbl
[22] Kogan I.A., Olver P.J., “Invariants of objects and their images under surjective maps”, Lobachevskii J. Math., 36 (2015), 260–285, arXiv: 1509.06690 | DOI | MR | Zbl
[23] Krämer H.M., “Bowley's law: The diffusion of an empirical supposition into economic theory”, Pap. Polit. Econ., 61 (2011), 19–49 | DOI | MR
[24] Kreinovich V., Kosheleva O., “Limit theorems as blessing of dimensionality: neural-oriented overview”, Entropy, 23 (2021), 501, 19 pp. | DOI | MR
[25] La Torre D., Liuzzi D., Marsiglio S., “Pollution diffusion and abatement activities across space and over time”, Math. Social Sci., 78 (2015), 48–63 | DOI | MR | Zbl
[26] Olver P.J., “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18 (1977), 1212–1215 | DOI | MR | Zbl
[27] Olver P.J., Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer, New York, 1986 | DOI | MR | Zbl
[28] Olver P.J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[29] Olver P.J., Classical invariant theory, London Math. Soc. Stud. Texts, 44, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[30] Olver P.J., “Moving frames – in geometry, algebra, computer vision, and numerical analysis”, Foundations of Computational Mathematics (Oxford, 1999), London Math. Soc. Lecture Note Ser., 284, Cambridge University Press, Cambridge, 2001, 267–297 | MR | Zbl
[31] Olver P.J., Introduction to partial differential equations, Undergrad. Texts Math., Springer, Cham, 2014 | DOI | MR | Zbl
[32] Olver P.J., “Motion and continuity”, Math. Intelligencer, 44 (2022), 241–249 | DOI | MR
[33] Olver P.J., Pohjanpelto J., “Moving frames for Lie pseudo-groups”, Canad. J. Math., 60 (2008), 1336–1386 | DOI | MR | Zbl
[34] Olver P.J., Shakiban C., Applied linear algebra, Pearson Prentice Hall, Upper Saddle River, NJ, 2006 | MR | Zbl
[35] Olver P.J., Valiquette F., “Recursive moving frames for Lie pseudo-groups”, Results Math., 73 (2018), 57, 64 pp. | DOI | MR | Zbl
[36] Orlando G., On the assumptions of the Cobb–Douglas production function and their assessment in contemporary economic theory, 2023, 21 pp. https://ssrn.com/abstract=4439917
[37] Perets G., Yashiv E., Lie symmetries and essential restrictions in economic optimization, CEPR Discussion Paper No DP12611, 2018, 33 pp.
[38] Praught J., Smirnov R.G., “Andrew Lenard: a mystery unraveled”, SIGMA, 1 (2005), 005, 7 pp., arXiv: nlin.SI/0510055 | DOI | MR | Zbl
[39] Samuelson P., Economics: An introductory textbook, McGraw-Hill, New York, 1964
[40] Sato R., Theory of technical change and economic invariance. Application of Lie groups, Economic Theory, Econometrics, and Mathematical Economics, Academic Press, Inc., New York, 1981 | MR
[41] Sato R., Ramachandran R.V., “Symmetry and economic invariance”, Adv. Jpn. Bus. Econ., 1, Springer, Tokyo, 2014 | DOI | MR
[42] Saunders D.J., The geometry of jet bundles, London Math. Soc. Lecture Note Ser., 142, Cambridge University Press, Cambridge, 1989 | DOI | MR | Zbl
[43] Schneider D., The labor share: A review of theory and evidence, SFB649 Economic Risk, Discussion Paper, 2011
[44] Smirnov R.G., Wang K., “In search of a new economic model determined by logistic growth”, European J. Appl. Math., 31 (2020), 339–368, arXiv: 1711.02625 | DOI | MR | Zbl
[45] Smirnov R.G., Wang K., “The Cobb–Douglas production function revisited”, Proceedings of the International Conference on Applied Mathematics, Modeling and Computational Science “AMMCS-2019” (August 18–23, 2019, Waterloo, Ontario, Canada), Springer Proc. Math. Stat., 343, Springer, Cham, 2021, 725–734, arXiv: 1910.06739 | DOI
[46] Smirnov R.G., Wang K., Wang Z., “The Cobb–Douglas production function for an exponential model”, Advances in Econometrics, Operational Research, Data Science and Actuarial Studies: Techniques and Theories, Springer, Cham, 2022, 1–12 | DOI | MR
[47] Stern D.I., “The rise and fall of the environmental Kuznets curve”, World Develop., 28 (2004), 1419–1439 | DOI
[48] Stockhammer E., “Why have wage shares fallen? An analysis of the determinants of functional income distribution”, Wage-Led Growth, Adv. Labour Stud., Palgrave Macmillan, London, 2013, 40–70 | DOI
[49] Xiang H., Is Canada's aggregate production function Cobb–Douglas? Estimation of the elasticity of substitution between capital and labor, Master Thesis, Simon Fraser University, 2004
[50] Yezzi A., Kichenassamy S., Kumar A., Olver P.J., Tannenbaum A., “A geometric snake model for segmentation of medical imagery”, IEEE Trans. Medical Imaging, 16 (1997), 199–209 | DOI