@article{SIGMA_2024_20_a43,
author = {Danylo Yakymenko},
title = {SICs and the {Triangle} {Group} $(3,3,3)$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a43/}
}
Danylo Yakymenko. SICs and the Triangle Group $(3,3,3)$. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a43/
[1] Andersson O., Dumitru I., “Aligned SICs and embedded tight frames in even dimensions”, J. Phys. A, 52 (2019), 425302, 25 pp., arXiv: 1905.09737 | DOI | MR | Zbl
[2] Appleby D.M., “Symmetric informationally complete-positive operator valued measures and the extended Clifford group”, J. Math. Phys., 46 (2005), 052107, 29 pp., arXiv: quant-ph/0412001 | DOI | MR | Zbl
[3] Appleby M., Bengtsson I., Dumitru I., Flammia S., “Dimension towers of SICs. I Aligned SICs and embedded tight frames”, J. Math. Phys., 58 (2017), 112201, 19 pp., arXiv: 1707.09911 | DOI | MR | Zbl
[4] Appleby M., Bengtsson I., Grassl M., Harrison M., McConnell G., “SIC-POVMs from Stark units: prime dimensions $n^2 + 3$”, J. Math. Phys., 63 (2022), 112205, 31 pp., arXiv: 2112.05552 | DOI | MR | Zbl
[5] Appleby M., Bengtsson I., Grassl M., Harrison M., SIC-POVMs from Stark Units: Dimensions $n^2+3=4p$, $p$ prime, 2024, arXiv: 2403.02872 | MR
[6] Appleby M., Flammia S., McConnell G., Yard J., “SICs and algebraic number theory”, Found. Phys., 47 (2017), 1042–1059, arXiv: 1701.05200 | DOI | MR | Zbl
[7] Bengtsson I., Blanchfield K., Campbell E., Howard M., “Order 3 symmetry in the Clifford hierarchy”, J. Phys. A, 47 (2014), 455302, 13 pp., arXiv: 1407.2713 | DOI | MR | Zbl
[8] Bos L., Waldron S., “SICs and the elements of order three in the Clifford group”, J. Phys. A, 52 (2019), 105301, 31 pp. | DOI | MR | Zbl
[9] Davidson K.R., $C^*$-algebras by example, Fields Inst. Monogr., 6, American Mathematical Society, Providence, RI, 1996 | DOI | MR | Zbl
[10] Flammia S.T., “On SIC-POVMs in prime dimensions”, J. Phys. A, 39 (2006), 13483–13493, arXiv: quant-ph/0605050 | DOI | MR | Zbl
[11] Fuchs C., Hoang M., Stacey B., “The SIC Question: History and State of Play”, Axioms, 6 (2017), 21, 20 pp., arXiv: 1703.07901 | DOI
[12] Kirillov A.A., Elements of the theory of representations, Grundlehren Math. Wiss., 220, Springer, Berlin, 1976 | DOI | MR | Zbl
[13] Kopp G.S., “SIC-POVMs and the Stark conjectures”, Int. Math. Res. Not., 2021 (2021), 13812–13838, arXiv: 1807.05877 | DOI | MR | Zbl
[14] Livins'kyi I.V., Radchenko D.V., “Representations of algebras defined by a multiplicative relation and corresponding to the extended Dynkin graphs $\tilde{D}_4$, $\tilde{E}_6$, $\tilde{E}_7$, and $\tilde{E}_8$”, Ukrainian Math. J., 64 (2013), 1865–1892 | DOI | MR | Zbl
[15] Magnus W., Noneuclidean tesselations and their groups, Pure Appl. Math., 61, Academic Press, New York, 1974 | MR | Zbl
[16] Renes J.M., Blume-Kohout R., Scott A.J., Caves C.M., “Symmetric informationally complete quantum measurements”, J. Math. Phys., 45 (2004), 2171–2180, arXiv: quant-ph/0310075 | DOI | MR | Zbl
[17] Scott A.J., SICs: Extending the list of solutions, arXiv: 1703.03993
[18] Scott A.J., “Tight informationally complete quantum measurements”, J. Phys. A, 39 (2006), 13507–13530, arXiv: quant-ph/0604049 | DOI | MR | Zbl
[19] Scott A.J., Grassl M., “Symmetric informationally complete positive-operator-valued measures: a new computer study”, J. Math. Phys., 51 (2010), 042203, 16 pp., arXiv: 0910.5784 | DOI | MR | Zbl
[20] Weyl H., The theory of groups and quantum mechanics, Dover Publications, New York, 1950 | MR
[21] Zauner G., “Quantum designs: foundations of a noncommutative design theory”, Int. J. Quantum Inf., 9 (2011), 445–507 | DOI | MR | Zbl
[22] Zhu H., “SIC POVMs and Clifford groups in prime dimensions”, J. Phys. A, 43 (2010), 305305, 24 pp., arXiv: 1003.3591 | DOI | MR | Zbl