@article{SIGMA_2024_20_a40,
author = {Naihuan Jing and Zhijun Li and Danxia Wang},
title = {Skew {Symplectic} and {Orthogonal} {Schur} {Functions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a40/}
}
Naihuan Jing; Zhijun Li; Danxia Wang. Skew Symplectic and Orthogonal Schur Functions. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a40/
[1] Albion S.P., Fischer I., Höngesberg H., Schreier-Aigner F., Skew symplectic and orthogonal characters through lattice paths, arXiv: 2305.11730
[2] Ayyer A., Fischer I., “Bijective proofs of skew Schur polynomial factorizations”, J. Combin. Theory Ser. A, 174 (2020), 105241, 40 pp., arXiv: 1905.05226 | DOI | MR | Zbl
[3] Baker T.H., “Vertex operator realization of symplectic and orthogonal $S$-functions”, J. Phys. A, 29 (1996), 3099–3117 | DOI | MR
[4] Betea D., Correlations for symplectic and orthogonal Schur measures, arXiv: 1804.08495
[5] Cuenca C., Gorin V., “$q$-deformed character theory for infinite-dimensional symplectic and orthogonal groups”, Selecta Math. (N.S.), 26 (2020), 40, 55 pp., arXiv: 1812.06523 | DOI | MR | Zbl
[6] Date E., Kashiwara M., Jimbo M., Miwa T., “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, 1981), World Scientific Publishing, Singapore, 1983, 39–119 | MR
[7] Fauser B., Jarvis P.D., King R.C., “Plethysms, replicated Schur functions and series, with applications to vertex operators”, J. Phys. A, 43 (2010), 405202, 30 pp., arXiv: 1006.4266 | DOI | MR | Zbl
[8] Frenkel I.B., Kac V.G., “Basic representations of affine Lie algebras and dual resonance models”, Invent. Math., 62 (1980), 23–66 | DOI | MR | Zbl
[9] Jing N., “Vertex operators, symmetric functions, and the spin group $\Gamma_n$”, J. Algebra, 138 (1991), 340–398 | DOI | MR | Zbl
[10] Jing N., “Symmetric polynomials and $U_q(\widehat{\rm sl}{}_2)$”, Represent. Theory, 4 (2000), 46–63, arXiv: math.QA/9902109 | DOI | MR | Zbl
[11] Jing N., Li Z., “A note on Cauchy's formula”, Adv. in Appl. Math., 153 (2024), 102630, 14 pp., arXiv: 2202.11175 | DOI | MR | Zbl
[12] Jing N., Nie B., “Vertex operators, Weyl determinant formulae and Littlewood duality”, Ann. Comb., 19 (2015), 427–442, arXiv: 1308.2792 | DOI | MR | Zbl
[13] Jing N., Rozhkovskaya N., “Vertex operators arising from Jacobi–Trudi identities”, Comm. Math. Phys., 346 (2016), 679–701, arXiv: 1411.4725 | DOI | MR | Zbl
[14] Koike K., Terada I., “Young-diagrammatic methods for the representation theory of the classical groups of type $B_n$, $C_n$, $D_n$”, J. Algebra, 107 (1987), 466–511 | DOI | MR | Zbl
[15] Koike K., Terada I., “Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank”, Adv. Math., 79 (1990), 104–135 | DOI | MR | Zbl
[16] Lam T., “A combinatorial generalization of the Boson-Fermion correspondence”, Math. Res. Lett., 13 (2006), 377–392, arXiv: math.CO/0507341 | DOI | MR | Zbl
[17] Li H., Tan S., Wang Q., “A certain Clifford-like algebra and quantum vertex algebras”, Israel J. Math., 216 (2016), 441–470, arXiv: 1505.07165 | DOI | MR | Zbl
[18] Littlewood D.E., The theory of group characters and matrix representations of groups, Oxford University Press, New York, 1940 | MR | Zbl
[19] Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., The Clarendon Press, New York, 1995 | DOI | MR
[20] Meckes E.S., The random matrix theory of the classical compact groups, Cambridge Tracts in Math., 218, Cambridge University Press, Cambridge, 2019 | DOI | MR | Zbl
[21] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7 (2001), 57–81, arXiv: math.RT/9907127 | DOI | MR | Zbl
[22] Proctor R.A., “Young tableaux, Gel'fand patterns, and branching rules for classical groups”, J. Algebra, 164 (1994), 299–360 | DOI | MR | Zbl
[23] Shimozono M., Zabrocki M., “Deformed universal characters for classical and affine algebras”, J. Algebra, 299 (2006), 33–61, arXiv: math.CO/0404288 | DOI | MR | Zbl
[24] Stanley R.P., Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[25] Sundaram S., “Tableaux in the representation theory of the classical Lie groups”, Invariant Theory and Tableaux (Minneapolis, MN), IMA Vol. Math. Appl., 19, Springer, New York, 1988 | MR
[26] Weyl H., The classical groups. Their invariants and representations, Princeton Math. Ser., Princeton University Press, Princeton, NJ, 1946 | DOI | MR | Zbl