Skew Symplectic and Orthogonal Schur Functions
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the vertex operator representations for symplectic and orthogonal Schur functions, we define two families of symmetric functions and show that they are the skew symplectic and skew orthogonal Schur polynomials defined implicitly by Koike and Terada and satisfy the general branching rules. Furthermore, we derive the Jacobi–Trudi identities and Gelfand–Tsetlin patterns for these symmetric functions. Additionally, the vertex operator method yields their Cauchy-type identities. This demonstrates that vertex operator representations serve not only as a tool for studying symmetric functions but also offers unified realizations for skew Schur functions of types A, C, and D.
Keywords: skew orthogonal/symplectic Schur functions, Jacobi–Trudi identity, Gelfand–Tsetlin patterns, vertex operators.
@article{SIGMA_2024_20_a40,
     author = {Naihuan Jing and Zhijun Li and Danxia Wang},
     title = {Skew {Symplectic} and {Orthogonal} {Schur} {Functions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a40/}
}
TY  - JOUR
AU  - Naihuan Jing
AU  - Zhijun Li
AU  - Danxia Wang
TI  - Skew Symplectic and Orthogonal Schur Functions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a40/
LA  - en
ID  - SIGMA_2024_20_a40
ER  - 
%0 Journal Article
%A Naihuan Jing
%A Zhijun Li
%A Danxia Wang
%T Skew Symplectic and Orthogonal Schur Functions
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a40/
%G en
%F SIGMA_2024_20_a40
Naihuan Jing; Zhijun Li; Danxia Wang. Skew Symplectic and Orthogonal Schur Functions. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a40/

[1] Albion S.P., Fischer I., Höngesberg H., Schreier-Aigner F., Skew symplectic and orthogonal characters through lattice paths, arXiv: 2305.11730

[2] Ayyer A., Fischer I., “Bijective proofs of skew Schur polynomial factorizations”, J. Combin. Theory Ser. A, 174 (2020), 105241, 40 pp., arXiv: 1905.05226 | DOI | MR | Zbl

[3] Baker T.H., “Vertex operator realization of symplectic and orthogonal $S$-functions”, J. Phys. A, 29 (1996), 3099–3117 | DOI | MR

[4] Betea D., Correlations for symplectic and orthogonal Schur measures, arXiv: 1804.08495

[5] Cuenca C., Gorin V., “$q$-deformed character theory for infinite-dimensional symplectic and orthogonal groups”, Selecta Math. (N.S.), 26 (2020), 40, 55 pp., arXiv: 1812.06523 | DOI | MR | Zbl

[6] Date E., Kashiwara M., Jimbo M., Miwa T., “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, 1981), World Scientific Publishing, Singapore, 1983, 39–119 | MR

[7] Fauser B., Jarvis P.D., King R.C., “Plethysms, replicated Schur functions and series, with applications to vertex operators”, J. Phys. A, 43 (2010), 405202, 30 pp., arXiv: 1006.4266 | DOI | MR | Zbl

[8] Frenkel I.B., Kac V.G., “Basic representations of affine Lie algebras and dual resonance models”, Invent. Math., 62 (1980), 23–66 | DOI | MR | Zbl

[9] Jing N., “Vertex operators, symmetric functions, and the spin group $\Gamma_n$”, J. Algebra, 138 (1991), 340–398 | DOI | MR | Zbl

[10] Jing N., “Symmetric polynomials and $U_q(\widehat{\rm sl}{}_2)$”, Represent. Theory, 4 (2000), 46–63, arXiv: math.QA/9902109 | DOI | MR | Zbl

[11] Jing N., Li Z., “A note on Cauchy's formula”, Adv. in Appl. Math., 153 (2024), 102630, 14 pp., arXiv: 2202.11175 | DOI | MR | Zbl

[12] Jing N., Nie B., “Vertex operators, Weyl determinant formulae and Littlewood duality”, Ann. Comb., 19 (2015), 427–442, arXiv: 1308.2792 | DOI | MR | Zbl

[13] Jing N., Rozhkovskaya N., “Vertex operators arising from Jacobi–Trudi identities”, Comm. Math. Phys., 346 (2016), 679–701, arXiv: 1411.4725 | DOI | MR | Zbl

[14] Koike K., Terada I., “Young-diagrammatic methods for the representation theory of the classical groups of type $B_n$, $C_n$, $D_n$”, J. Algebra, 107 (1987), 466–511 | DOI | MR | Zbl

[15] Koike K., Terada I., “Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank”, Adv. Math., 79 (1990), 104–135 | DOI | MR | Zbl

[16] Lam T., “A combinatorial generalization of the Boson-Fermion correspondence”, Math. Res. Lett., 13 (2006), 377–392, arXiv: math.CO/0507341 | DOI | MR | Zbl

[17] Li H., Tan S., Wang Q., “A certain Clifford-like algebra and quantum vertex algebras”, Israel J. Math., 216 (2016), 441–470, arXiv: 1505.07165 | DOI | MR | Zbl

[18] Littlewood D.E., The theory of group characters and matrix representations of groups, Oxford University Press, New York, 1940 | MR | Zbl

[19] Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., The Clarendon Press, New York, 1995 | DOI | MR

[20] Meckes E.S., The random matrix theory of the classical compact groups, Cambridge Tracts in Math., 218, Cambridge University Press, Cambridge, 2019 | DOI | MR | Zbl

[21] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7 (2001), 57–81, arXiv: math.RT/9907127 | DOI | MR | Zbl

[22] Proctor R.A., “Young tableaux, Gel'fand patterns, and branching rules for classical groups”, J. Algebra, 164 (1994), 299–360 | DOI | MR | Zbl

[23] Shimozono M., Zabrocki M., “Deformed universal characters for classical and affine algebras”, J. Algebra, 299 (2006), 33–61, arXiv: math.CO/0404288 | DOI | MR | Zbl

[24] Stanley R.P., Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[25] Sundaram S., “Tableaux in the representation theory of the classical Lie groups”, Invariant Theory and Tableaux (Minneapolis, MN), IMA Vol. Math. Appl., 19, Springer, New York, 1988 | MR

[26] Weyl H., The classical groups. Their invariants and representations, Princeton Math. Ser., Princeton University Press, Princeton, NJ, 1946 | DOI | MR | Zbl