@article{SIGMA_2024_20_a39,
author = {Zhijie Chen and Chang-Shou Lin and Yifan Yang},
title = {Co-Axial {Metrics} on the {Sphere} and {Algebraic} {Numbers}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a39/}
}
Zhijie Chen; Chang-Shou Lin; Yifan Yang. Co-Axial Metrics on the Sphere and Algebraic Numbers. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a39/
[1] Brezis H., Merle F., “Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x){\rm e}^u$ in two dimensions”, Comm. Partial Differential Equations, 16 (1991), 1223–1253 | DOI | MR | Zbl
[2] Chai C.-L., Lin C.-S., Wang C.-L., “Mean field equations, hyperelliptic curves and modular forms: I”, Camb. J. Math., 3 (2015), 127–274, arXiv: 1502.03297 | DOI | MR | Zbl
[3] Chen Z., Lin C.-S., “Critical points of the classical Eisenstein series of weight two”, J. Differential Geom., 113 (2019), 189–226, arXiv: 1707.04804 | DOI | MR | Zbl
[4] Chen Z., Lin C.-S., “Sharp nonexistence results for curvature equations with four singular sources on rectangular tori”, Amer. J. Math., 142 (2020), 1269–1300, arXiv: 1709.04287 | DOI | MR | Zbl
[5] Chen Z., Lin C.-S., “Exact number and non-degeneracy of critical points of multiple Green functions on rectangular tori”, J. Differential Geom., 118 (2021), 457–485 | DOI | MR | Zbl
[6] Chen Z., Lin C.-S., Yang Y., Metrics with positive constant curvature and algebraic $j$-values, in preparation
[7] Cox D.A., Little J., O'Shea D., Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergrad. Texts Math., 4th ed., Springer, Cham, 2015 | DOI | MR | Zbl
[8] Eremenko A., “Metrics of positive curvature with conic singularities on the sphere”, Proc. Amer. Math. Soc., 132 (2004), 3349–3355, arXiv: math.MG/0208025 | DOI | MR | Zbl
[9] Eremenko A., “Co-axial monodromy”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (2020), 619–634, arXiv: 1706.04608 | DOI | MR | Zbl
[10] Eremenko A., Gabrielov A., Tarasov V., “Metrics with conic singularities and spherical polygons”, Illinois J. Math., 58 (2014), 739–755, arXiv: 1405.1738 | DOI | MR | Zbl
[11] Eremenko A., Gabrielov A., Tarasov V., “Spherical quadrilaterals with three non-integer angles”, J. Math. Phys. Anal. Geom., 12 (2016), 134–167, arXiv: 1504.02928 | DOI | MR | Zbl
[12] Eremenko A., Tarasov V., “Fuchsian equations with three non-apparent singularities”, SIGMA, 14 (2018), 058, 12 pp., arXiv: 1801.08529 | DOI | MR | Zbl
[13] Guo J.-W., Lin C.-S., Yang Y., “Metrics with positive constant curvature and modular differential equations”, Camb. J. Math., 9 (2021), 977–1033, arXiv: 2110.15580 | DOI | MR
[14] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects Math., E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR
[15] Lin C.-S., Wang C.-L., “Geometric quantities arising from bubbling analysis of mean field equations”, Comm. Anal. Geom., 28 (2020), 1289–1313, arXiv: 1609.07204 | DOI | MR | Zbl
[16] Luo F., Tian G., “Liouville equation and spherical convex polytopes”, Proc. Amer. Math. Soc., 116 (1992), 1119–1129 | DOI | MR | Zbl
[17] Mondello G., Panov D., “Spherical metrics with conical singularities on a 2-sphere: angle constraints”, Int. Math. Res. Not., 2016 (2016), 4937–4995, arXiv: 1505.01994 | DOI | MR | Zbl
[18] Mondello G., Panov D., “Spherical surfaces with conical points: systole inequality and moduli spaces with many connected components”, Geom. Funct. Anal., 29 (2019), 1110–1193, arXiv: 1807.04373 | DOI | MR | Zbl
[19] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl