Compatible Poisson Brackets Associated with Elliptic Curves in $G(2,5)$
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that a pair of Feigin–Odesskii Poisson brackets on ${\mathbb P}^4$ associated with elliptic curves given as linear sections of the Grassmannian $G(2,5)$ are compatible if and only if this pair of elliptic curves is contained in a del Pezzo surface obtained as a linear section of $G(2,5)$.
Keywords: bi-Hamiltonian structure, elliptic curve, triple Massey products.
Mots-clés : Poisson bracket
@article{SIGMA_2024_20_a36,
     author = {Nikita Markaryan and Alexander Polishchuk},
     title = {Compatible {Poisson} {Brackets} {Associated} with {Elliptic} {Curves} in $G(2,5)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a36/}
}
TY  - JOUR
AU  - Nikita Markaryan
AU  - Alexander Polishchuk
TI  - Compatible Poisson Brackets Associated with Elliptic Curves in $G(2,5)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a36/
LA  - en
ID  - SIGMA_2024_20_a36
ER  - 
%0 Journal Article
%A Nikita Markaryan
%A Alexander Polishchuk
%T Compatible Poisson Brackets Associated with Elliptic Curves in $G(2,5)$
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a36/
%G en
%F SIGMA_2024_20_a36
Nikita Markaryan; Alexander Polishchuk. Compatible Poisson Brackets Associated with Elliptic Curves in $G(2,5)$. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a36/

[1] Feigin B.L., Odesskii A.V., “Vector bundles on an elliptic curve and Sklyanin algebras”, Topics in Quantum Groups and Finite-Type Invariants, Amer. Math. Soc. Transl. Ser. 2, 185, American Mathematical Society, Providence, RI, 1998, 65–84, arXiv: q-alg/9509021 | DOI | MR | Zbl

[2] Gorodetsky L., Markarian N., On conormal Lie algebras of Feigin–Odesskii {P}oisson structures, arXiv: 2403.02805

[3] Hua Z., Polishchuk A., “Elliptic bihamiltonian structures from relative shifted {P}oisson structures”, J. Topol., 16 (2023), 1389–1422 | DOI | DOI | MR | Zbl

[4] Kapranov M.M., “On the derived category of coherent sheaves on Grassmann manifolds”, Math. USSR Izv., 24 (1985), 183–192 | DOI | MR | Zbl

[5] Keller B., “Introduction to $A$-infinity algebras and modules”, Homology Homotopy Appl., 3 (2001), 1–35 | DOI | MR | Zbl

[6] Macdonald I.G., Symmetric functions and {H}all polynomials, Oxford Math. Monogr., 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[7] Markarian N., Polishchuk A., “Compatible Feigin–Odesskii {P}oisson brackets”, Manuscripta Math., 173 (2024), 907–923, arXiv: 2207.07770 | DOI | MR

[8] Nordstrom V., Polishchuk A., “Ten compatible {P}oisson brackets on $\mathbb P^5$”, SIGMA, 19 (2023), 059, 10 pp., arXiv: 2301.13417 | DOI | MR | Zbl

[9] Odesskii A., Wolf T., “Compatible quadratic {P}oisson brackets related to a family of elliptic curves”, J. Geom. Phys., 63 (2013), 107–117 | DOI | MR | Zbl

[10] Polishchuk A., “Poisson structures and birational morphisms associated with bundles on elliptic curves”, Internat. Math. Res. Notices, 1998 (1998), 683–703 | DOI | MR

[11] Rubtsov V., “Quadro-cubic Cremona transformations and Feigin–Odesskii–Sklyanin algebras with 5 generators”, Recent {D}evelopments in Integrable Systems and Related Topics of {M}athematical {P}hysics, Springer Proc. Math. Stat., 273, Springer, Cham, 2018, 75–106 | DOI | Zbl