Categories of Lagrangian Correspondences in Super Hilbert Spaces and Fermionic Functorial Field Theory
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study Lagrangian correspondences between Hilbert spaces. A main focus is the question when the composition of two Lagrangian correspondences is again Lagrangian. Our answer leads in particular to a well-defined composition law in a category of Lagrangian correspondences respecting given polarizations of the Hilbert spaces involved. As an application, we construct a functorial field theory on geometric spin manifolds with values in this category of Lagrangian correspondences, which can be viewed as a formal Wick rotation of the theory associated to a free fermionic particle in a curved spacetime.
Keywords: Lagrangians, correspondences, functorial field theory, Clifford algebras.
@article{SIGMA_2024_20_a35,
     author = {Matthias Ludewig},
     title = {Categories of {Lagrangian} {Correspondences} in {Super} {Hilbert} {Spaces} and {Fermionic} {Functorial} {Field} {Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a35/}
}
TY  - JOUR
AU  - Matthias Ludewig
TI  - Categories of Lagrangian Correspondences in Super Hilbert Spaces and Fermionic Functorial Field Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a35/
LA  - en
ID  - SIGMA_2024_20_a35
ER  - 
%0 Journal Article
%A Matthias Ludewig
%T Categories of Lagrangian Correspondences in Super Hilbert Spaces and Fermionic Functorial Field Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a35/
%G en
%F SIGMA_2024_20_a35
Matthias Ludewig. Categories of Lagrangian Correspondences in Super Hilbert Spaces and Fermionic Functorial Field Theory. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a35/

[1] Ammann B., Dahl M., Humbert E., “Harmonic spinors and local deformations of the metric”, Math. Res. Lett., 18 (2011), 927–936, arXiv: 0903.4544 | DOI | MR | Zbl

[2] Atiyah M.F., Bott R., Shapiro A., “Clifford modules”, Topology, 3 (1964), 3–38 | DOI | MR | Zbl

[3] Bär C., Ballmann W., “Guide to elliptic boundary value problems for Dirac-type operators”, Arbeitstagung Bonn 2013, Progr. Math., 319, Birkhäuser, Cham, 2016, 43–80, arXiv: 1307.3021 | DOI | MR | Zbl

[4] Bär C., Ginoux N., Pfäffle F., “Wave equations on Lorentzian manifolds and quantization”, ESI Lect. Math. Phys., European Mathematical Society (EMS), Zürich, 2007, arXiv: 0806.1036 | DOI | MR

[5] Bär C., Strohmaier A., “An index theorem for Lorentzian manifolds with compact spacelike Cauchy boundary”, Amer. J. Math., 141 (2019), 1421–1455, arXiv: 1506.00959 | DOI | MR | Zbl

[6] Bernal A.N., Sánchez M., “On smooth Cauchy hypersurfaces and Geroch's splitting theorem”, Comm. Math. Phys., 243 (2003), 461–470, arXiv: gr-qc/0306108 | DOI | MR | Zbl

[7] Booß-Bavnbek B., Wojciechowski K.P., Elliptic boundary problems for Dirac operators, Math. Theory Appl., Birkhäuser, Boston, MA, 1993 | DOI | MR | Zbl

[8] Dai X., Freed D.S., “$\eta$-invariants and determinant lines”, J. Math. Phys., 35 (1994), 5155–5194 | DOI | MR | Zbl

[9] Freed D.S., Lectures on field theory and topology, CBMS Reg. Conf. Ser. Math., 133, American Mathematical Society, Providence, RI, 2019 | DOI | MR | Zbl

[10] Halmos P.R., Two subspaces, Trans. Amer. Math. Soc., 144 (1969), 381–389 | DOI | MR | Zbl

[11] Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl

[12] Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[13] Ludewig M., Roos S., “The chiral anomaly of the free fermion in functorial field theory”, Ann. Henri Poincaré, 21 (2020), 1191–1233, arXiv: 1909.04212 | DOI | MR | Zbl

[14] Palais R.S., Seminar on the Atiyah–Singer index theorem, Ann. of Math. Stud., 57, Princeton University Press, Princeton, NJ, 1965 | MR | Zbl

[15] Schommer-Pries C.J., The classification of two-dimensional extended topological field theories, Ph.D. Thesis, University of California, Berkeley, 2009, arXiv: 1112.1000 | MR

[16] Stolz S., Teichner P., What is an elliptic object?, Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., 308, Cambridge University Press, Cambridge, 2004, 247–343 | DOI | MR | Zbl

[17] Stolz S., Teichner P., “Supersymmetric field theories and generalized cohomology”, Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, Proc. Sympos. Pure Math., 83, American Mathematical Society, Providence, RI, 2011, 279–340, arXiv: 1108.0189 | DOI | MR | Zbl