@article{SIGMA_2024_20_a35,
author = {Matthias Ludewig},
title = {Categories of {Lagrangian} {Correspondences} in {Super} {Hilbert} {Spaces} and {Fermionic} {Functorial} {Field} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a35/}
}
TY - JOUR AU - Matthias Ludewig TI - Categories of Lagrangian Correspondences in Super Hilbert Spaces and Fermionic Functorial Field Theory JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a35/ LA - en ID - SIGMA_2024_20_a35 ER -
%0 Journal Article %A Matthias Ludewig %T Categories of Lagrangian Correspondences in Super Hilbert Spaces and Fermionic Functorial Field Theory %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a35/ %G en %F SIGMA_2024_20_a35
Matthias Ludewig. Categories of Lagrangian Correspondences in Super Hilbert Spaces and Fermionic Functorial Field Theory. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a35/
[1] Ammann B., Dahl M., Humbert E., “Harmonic spinors and local deformations of the metric”, Math. Res. Lett., 18 (2011), 927–936, arXiv: 0903.4544 | DOI | MR | Zbl
[2] Atiyah M.F., Bott R., Shapiro A., “Clifford modules”, Topology, 3 (1964), 3–38 | DOI | MR | Zbl
[3] Bär C., Ballmann W., “Guide to elliptic boundary value problems for Dirac-type operators”, Arbeitstagung Bonn 2013, Progr. Math., 319, Birkhäuser, Cham, 2016, 43–80, arXiv: 1307.3021 | DOI | MR | Zbl
[4] Bär C., Ginoux N., Pfäffle F., “Wave equations on Lorentzian manifolds and quantization”, ESI Lect. Math. Phys., European Mathematical Society (EMS), Zürich, 2007, arXiv: 0806.1036 | DOI | MR
[5] Bär C., Strohmaier A., “An index theorem for Lorentzian manifolds with compact spacelike Cauchy boundary”, Amer. J. Math., 141 (2019), 1421–1455, arXiv: 1506.00959 | DOI | MR | Zbl
[6] Bernal A.N., Sánchez M., “On smooth Cauchy hypersurfaces and Geroch's splitting theorem”, Comm. Math. Phys., 243 (2003), 461–470, arXiv: gr-qc/0306108 | DOI | MR | Zbl
[7] Booß-Bavnbek B., Wojciechowski K.P., Elliptic boundary problems for Dirac operators, Math. Theory Appl., Birkhäuser, Boston, MA, 1993 | DOI | MR | Zbl
[8] Dai X., Freed D.S., “$\eta$-invariants and determinant lines”, J. Math. Phys., 35 (1994), 5155–5194 | DOI | MR | Zbl
[9] Freed D.S., Lectures on field theory and topology, CBMS Reg. Conf. Ser. Math., 133, American Mathematical Society, Providence, RI, 2019 | DOI | MR | Zbl
[10] Halmos P.R., Two subspaces, Trans. Amer. Math. Soc., 144 (1969), 381–389 | DOI | MR | Zbl
[11] Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl
[12] Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl
[13] Ludewig M., Roos S., “The chiral anomaly of the free fermion in functorial field theory”, Ann. Henri Poincaré, 21 (2020), 1191–1233, arXiv: 1909.04212 | DOI | MR | Zbl
[14] Palais R.S., Seminar on the Atiyah–Singer index theorem, Ann. of Math. Stud., 57, Princeton University Press, Princeton, NJ, 1965 | MR | Zbl
[15] Schommer-Pries C.J., The classification of two-dimensional extended topological field theories, Ph.D. Thesis, University of California, Berkeley, 2009, arXiv: 1112.1000 | MR
[16] Stolz S., Teichner P., What is an elliptic object?, Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., 308, Cambridge University Press, Cambridge, 2004, 247–343 | DOI | MR | Zbl
[17] Stolz S., Teichner P., “Supersymmetric field theories and generalized cohomology”, Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, Proc. Sympos. Pure Math., 83, American Mathematical Society, Providence, RI, 2011, 279–340, arXiv: 1108.0189 | DOI | MR | Zbl