Scalar Curvature Rigidity of Warped Product Metrics
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show scalar-mean curvature rigidity of warped products of round spheres of dimension at least 2 over compact intervals equipped with strictly log-concave warping functions. This generalizes earlier results of Cecchini–Zeidler to all dimensions. Moreover, we show scalar curvature rigidity of round spheres of dimension at least 3 with two antipodal points removed. This resolves a problem in Gromov's “Four Lectures” in all dimensions. Our arguments are based on spin geometry.
Keywords: scalar curvature, warped product, bandwidth estimate, Llarull's theorem, holographic index theorem.
@article{SIGMA_2024_20_a34,
     author = {Christian B\"ar and Simon Brendle and Bernhard Hanke and Yipeng Wang},
     title = {Scalar {Curvature} {Rigidity} of {Warped} {Product} {Metrics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a34/}
}
TY  - JOUR
AU  - Christian Bär
AU  - Simon Brendle
AU  - Bernhard Hanke
AU  - Yipeng Wang
TI  - Scalar Curvature Rigidity of Warped Product Metrics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a34/
LA  - en
ID  - SIGMA_2024_20_a34
ER  - 
%0 Journal Article
%A Christian Bär
%A Simon Brendle
%A Bernhard Hanke
%A Yipeng Wang
%T Scalar Curvature Rigidity of Warped Product Metrics
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a34/
%G en
%F SIGMA_2024_20_a34
Christian Bär; Simon Brendle; Bernhard Hanke; Yipeng Wang. Scalar Curvature Rigidity of Warped Product Metrics. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a34/

[1] Bär C., Ballmann W., “Boundary value problems for elliptic differential operators of first order”, International Press, Boston, MA, 2012, 1–78, arXiv: 1101.1196 | DOI | MR | Zbl

[2] Bär C., Brendle S., Chow T.-K.A., Hanke B., Rigidity results for initial data sets satisfying the dominant energy condition, in preparation

[3] Bär C., Gauduchon P., Moroianu A., “Generalized cylinders in semi-Riemannian and spin geometry”, Math. Z., 249 (2005), 545–580, arXiv: math.DG/0303095 | DOI | MR | Zbl

[4] Booß-Bavnbek B., Wojciechowski K.P., Elliptic boundary problems for Dirac operators, Math. Theory Appl., Birkhäuser, Boston, MA, 1993 | DOI | MR | Zbl

[5] Cecchini S., Zeidler R., “Scalar and mean curvature comparison via the Dirac operator”, Geom. Topol. (to appear) , arXiv: 2103.06833

[6] Freed D.S., “Two index theorems in odd dimensions”, Comm. Anal. Geom., 6 (1998), 317–329, arXiv: dg-ga/9601005 | DOI | MR | Zbl

[7] Gromov M., “Four lectures on scalar curvature”, Perspectives in Scalar Curvature, v. 1, World Scientific, Hackensack, NJ, 2023, 1–514, arXiv: 1908.10612 | DOI | MR

[8] Gromov M., Lawson Jr. H.B., “Spin and scalar curvature in the presence of a fundamental group. I”, Ann. of Math., 111 (1980), 209–230 | DOI | MR | Zbl

[9] Gromov M., Lawson Jr. H.B., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Inst. Hautes Études Sci. Publ. Math., 1983, 83–196 | DOI | MR | Zbl

[10] Hirsch S., Kazaras D., Khuri M., Zhang Y., Rigid comparison geometry for Riemannian bands and open incomplete manifolds, arXiv: 2209.12857

[11] Hu Y., Liu P., Shi Y., “Rigidity of 3{D} spherical caps via $\mu$-bubbles”, Pacific J. Math., 323 (2023), 89–114, arXiv: 2205.08428 | DOI | MR | Zbl

[12] Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Math. Ser., 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[13] Lee D.A., Geometric relativity, Grad. Stud. Math., 201, American Mathematical Society, Providence, RI, 2019 | DOI | MR

[14] Llarull M., “Sharp estimates and the Dirac operator”, Math. Ann., 310 (1998), 55–71 | DOI | MR | Zbl

[15] Wang J., Xie Z., Scalar curvature rigidity of degenerate warped product spaces, arXiv: 2306.05413