@article{SIGMA_2024_20_a34,
author = {Christian B\"ar and Simon Brendle and Bernhard Hanke and Yipeng Wang},
title = {Scalar {Curvature} {Rigidity} of {Warped} {Product} {Metrics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a34/}
}
TY - JOUR AU - Christian Bär AU - Simon Brendle AU - Bernhard Hanke AU - Yipeng Wang TI - Scalar Curvature Rigidity of Warped Product Metrics JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a34/ LA - en ID - SIGMA_2024_20_a34 ER -
%0 Journal Article %A Christian Bär %A Simon Brendle %A Bernhard Hanke %A Yipeng Wang %T Scalar Curvature Rigidity of Warped Product Metrics %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a34/ %G en %F SIGMA_2024_20_a34
Christian Bär; Simon Brendle; Bernhard Hanke; Yipeng Wang. Scalar Curvature Rigidity of Warped Product Metrics. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a34/
[1] Bär C., Ballmann W., “Boundary value problems for elliptic differential operators of first order”, International Press, Boston, MA, 2012, 1–78, arXiv: 1101.1196 | DOI | MR | Zbl
[2] Bär C., Brendle S., Chow T.-K.A., Hanke B., Rigidity results for initial data sets satisfying the dominant energy condition, in preparation
[3] Bär C., Gauduchon P., Moroianu A., “Generalized cylinders in semi-Riemannian and spin geometry”, Math. Z., 249 (2005), 545–580, arXiv: math.DG/0303095 | DOI | MR | Zbl
[4] Booß-Bavnbek B., Wojciechowski K.P., Elliptic boundary problems for Dirac operators, Math. Theory Appl., Birkhäuser, Boston, MA, 1993 | DOI | MR | Zbl
[5] Cecchini S., Zeidler R., “Scalar and mean curvature comparison via the Dirac operator”, Geom. Topol. (to appear) , arXiv: 2103.06833
[6] Freed D.S., “Two index theorems in odd dimensions”, Comm. Anal. Geom., 6 (1998), 317–329, arXiv: dg-ga/9601005 | DOI | MR | Zbl
[7] Gromov M., “Four lectures on scalar curvature”, Perspectives in Scalar Curvature, v. 1, World Scientific, Hackensack, NJ, 2023, 1–514, arXiv: 1908.10612 | DOI | MR
[8] Gromov M., Lawson Jr. H.B., “Spin and scalar curvature in the presence of a fundamental group. I”, Ann. of Math., 111 (1980), 209–230 | DOI | MR | Zbl
[9] Gromov M., Lawson Jr. H.B., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Inst. Hautes Études Sci. Publ. Math., 1983, 83–196 | DOI | MR | Zbl
[10] Hirsch S., Kazaras D., Khuri M., Zhang Y., Rigid comparison geometry for Riemannian bands and open incomplete manifolds, arXiv: 2209.12857
[11] Hu Y., Liu P., Shi Y., “Rigidity of 3{D} spherical caps via $\mu$-bubbles”, Pacific J. Math., 323 (2023), 89–114, arXiv: 2205.08428 | DOI | MR | Zbl
[12] Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Math. Ser., 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl
[13] Lee D.A., Geometric relativity, Grad. Stud. Math., 201, American Mathematical Society, Providence, RI, 2019 | DOI | MR
[14] Llarull M., “Sharp estimates and the Dirac operator”, Math. Ann., 310 (1998), 55–71 | DOI | MR | Zbl
[15] Wang J., Xie Z., Scalar curvature rigidity of degenerate warped product spaces, arXiv: 2306.05413