@article{SIGMA_2024_20_a32,
author = {Oliver Daisey and Tom Ducat},
title = {A {Laurent} {Phenomenon} for the {Cayley} {Plane}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a32/}
}
Oliver Daisey; Tom Ducat. A Laurent Phenomenon for the Cayley Plane. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a32/
[1] Coxeter H.S.M., Regular polytopes, 3rd ed., Dover Publications, Inc., New York, 1973 | MR
[2] Daisey O., Laurent phenomenon algebra seed cell https://oliverdaisey.github.io/code.html | Zbl
[3] Dolgachev I.V., Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge, 2012 | DOI | MR | Zbl
[4] Ducat T., “The 3-dimensional Lyness map and a self-mirror log Calabi–Yau 3-fold”, Manuscripta Math., 174 (2024), 87–140, arXiv: 2105.07843 | DOI | MR
[5] Geiß C., Leclerc B., Schröer J., “Partial flag varieties and preprojective algebras”, Ann. Inst. Fourier (Grenoble), 58 (2008), 825–876, arXiv: math.RT/0609138 | DOI | MR | Zbl
[6] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI | MR
[7] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl
[8] Lam T., Pylyavskyy P., “Laurent phenomenon algebras”, Camb. J. Math., 4 (2016), 121–162, arXiv: 1206.2611 | DOI | MR | Zbl
[9] Moufang R., “Alternativkörper und der Satz vom vollständigen Vierseit $(D_9)$”, Abh. Math. Sem. Univ. Hamburg, 9 (1933), 207–222 | DOI | MR | Zbl
[10] Scott J.S., “Grassmannians and cluster algebras”, Proc. London Math. Soc. (3), 92 (2006), 345–380, arXiv: math/0311148 | DOI | MR | Zbl
[11] Snow D.M., “Homogeneous vector bundles”, Group Actions and Invariant Theory, CMS Conf. Proc., 10, American Mathematical Society, Providence, RI, 1989, 193–205 | MR
[12] Spacek P., Wang C., “Towards Landau–Ginzburg models for cominuscule spaces via the exceptional cominuscule family”, J. Algebra, 630 (2023), 334–393, arXiv: 2204.03548 | DOI | MR | Zbl