A Laurent Phenomenon for the Cayley Plane
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a Laurent phenomenon for the Cayley plane, which is the homogeneous variety associated to the cominuscule representation of $E_6$. The corresponding Laurent phenomenon algebra has finite type and appears in a natural sequence of LPAs indexed by the $E_n$ Dynkin diagrams for $n\leq6$. We conjecture the existence of a further finite type LPA, associated to the Freudenthal variety of type $E_7$.
Keywords: Laurent phenomenon, cluster structure, mirror symmetry, Cayley plane.
@article{SIGMA_2024_20_a32,
     author = {Oliver Daisey and Tom Ducat},
     title = {A {Laurent} {Phenomenon} for the {Cayley} {Plane}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a32/}
}
TY  - JOUR
AU  - Oliver Daisey
AU  - Tom Ducat
TI  - A Laurent Phenomenon for the Cayley Plane
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a32/
LA  - en
ID  - SIGMA_2024_20_a32
ER  - 
%0 Journal Article
%A Oliver Daisey
%A Tom Ducat
%T A Laurent Phenomenon for the Cayley Plane
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a32/
%G en
%F SIGMA_2024_20_a32
Oliver Daisey; Tom Ducat. A Laurent Phenomenon for the Cayley Plane. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a32/

[1] Coxeter H.S.M., Regular polytopes, 3rd ed., Dover Publications, Inc., New York, 1973 | MR

[2] Daisey O., Laurent phenomenon algebra seed cell https://oliverdaisey.github.io/code.html | Zbl

[3] Dolgachev I.V., Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge, 2012 | DOI | MR | Zbl

[4] Ducat T., “The 3-dimensional Lyness map and a self-mirror log Calabi–Yau 3-fold”, Manuscripta Math., 174 (2024), 87–140, arXiv: 2105.07843 | DOI | MR

[5] Geiß C., Leclerc B., Schröer J., “Partial flag varieties and preprojective algebras”, Ann. Inst. Fourier (Grenoble), 58 (2008), 825–876, arXiv: math.RT/0609138 | DOI | MR | Zbl

[6] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI | MR

[7] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl

[8] Lam T., Pylyavskyy P., “Laurent phenomenon algebras”, Camb. J. Math., 4 (2016), 121–162, arXiv: 1206.2611 | DOI | MR | Zbl

[9] Moufang R., “Alternativkörper und der Satz vom vollständigen Vierseit $(D_9)$”, Abh. Math. Sem. Univ. Hamburg, 9 (1933), 207–222 | DOI | MR | Zbl

[10] Scott J.S., “Grassmannians and cluster algebras”, Proc. London Math. Soc. (3), 92 (2006), 345–380, arXiv: math/0311148 | DOI | MR | Zbl

[11] Snow D.M., “Homogeneous vector bundles”, Group Actions and Invariant Theory, CMS Conf. Proc., 10, American Mathematical Society, Providence, RI, 1989, 193–205 | MR

[12] Spacek P., Wang C., “Towards Landau–Ginzburg models for cominuscule spaces via the exceptional cominuscule family”, J. Algebra, 630 (2023), 334–393, arXiv: 2204.03548 | DOI | MR | Zbl