Mots-clés : Kähler–Yang–Mills equations
@article{SIGMA_2024_20_a31,
author = {Oscar Garcia-Prada},
title = {K\"ahler{\textendash}Yang{\textendash}Mills {Equations} and {Vortices}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a31/}
}
Oscar Garcia-Prada. Kähler–Yang–Mills Equations and Vortices. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a31/
[1] Álvarez-Cónsul L., García-Fernández M., García-Prada O., “Coupled equations for Kähler metrics and Yang–Mills connections”, Geom. Topol., 17 (2013), 2731–2812, arXiv: 1102.0991 | DOI | MR | Zbl
[2] Álvarez-Cónsul L., Garcia-Fernandez M., García-Prada O., “Gravitating vortices, cosmic strings, and the Kähler–Yang–Mills equations”, Comm. Math. Phys., 351 (2017), 361–385, arXiv: 1510.03810 | DOI | MR | Zbl
[3] Álvarez-Cónsul L., Garcia-Fernandez M., García-Prada O., “On the Kähler–Yang–Mills–Higgs equations”, Pure Appl. Math. Q., 15 (2019), 1181–1217, arXiv: 1807.10691 | DOI | MR | Zbl
[4] Álvarez-Cónsul L., Garcia-Fernandez M., García-Prada O., Pingali V.P., “Gravitating vortices and the Einstein–Bogomol'nyi equations”, Math. Ann., 379 (2021), 1651–1684, arXiv: 1606.07699 | DOI | MR | Zbl
[5] Álvarez-Cónsul L., Garcia-Fernandez M., García-Prada O., Pingali V.P., Yao C., Symplectic reduction by stages and gravitating vortices, in preparation | MR
[6] Álvarez-Cónsul L., Garcia-Fernandez M., García-Prada O., Pingali V.P., Yao C., “Obstructions to the existence of solutions of the self-dual Einstein–Maxwell–Higgs equations on a compact surface”, Bull. Sci. Math., 183 (2023), 103233, 14 pp., arXiv: 2201.03455 | DOI | MR | Zbl
[7] Atiyah M.F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl
[8] Bando S., Mabuchi T., “Uniqueness of Einstein Kähler metrics modulo connected group actions”, Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North–Holland, Amsterdam, 1987, 11–40 | DOI | MR
[9] Bourguignon J.-P., Ezin J.-P., “Scalar curvature functions in a conformal class of metrics and conformal transformations”, Trans. Amer. Math. Soc., 301 (1987), 723–736 | DOI | MR | Zbl
[10] Bourguignon J.-P., Lawson Jr. H.B., “Stability and isolation phenomena for Yang–Mills fields”, Comm. Math. Phys., 79 (1981), 189–230 | DOI | MR | Zbl
[11] Bradlow S.B., “Vortices in holomorphic line bundles over closed Kähler manifolds”, Comm. Math. Phys., 135 (1990), 1–17 | DOI | MR | Zbl
[12] Bradlow S.B., García-Prada O., “Stable triples, equivariant bundles and dimensional reduction”, Math. Ann., 304 (1996), 225–252, arXiv: alg-geom/9401008 | DOI | MR | Zbl
[13] Bradlow S.B., García-Prada O., Gothen P.B., “Surface group representations and ${\rm U}(p,q)$-{H}iggs bundles”, J. Differential Geom., 64 (2003), 111–170, arXiv: math.AG/0211431 | DOI | MR | Zbl
[14] Bradlow S.B., García-Prada O., Gothen P.B., “Moduli spaces of holomorphic triples over compact Riemann surfaces”, Math. Ann., 328 (2004), 299–351, arXiv: math.AG/0211428 | DOI | MR | Zbl
[15] Comtet A., Gibbons G.W., “Bogomol'nyi bounds for cosmic strings”, Nuclear Phys. B, 299 (1988), 719–733, arXiv: 0809.4384 | DOI | MR
[16] Donaldson S.K., “A new proof of a theorem of Narasimhan and Seshadri”, J. Differential Geom., 18 (1983), 269–277 | DOI | MR | Zbl
[17] Donaldson S.K., “Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles”, Proc. Lond. Math. Soc., 50 (1985), 1–26 | DOI | MR | Zbl
[18] Donaldson S.K., “Remarks on gauge theory, complex geometry and $4$-manifold topology”, Fields Medallists' Lectures, World Sci. Ser. 20th Century Math., 5, World Scientific Publishing Co., Inc., River Edge, NJ, 1997, 384–403 | DOI | MR
[19] Fujiki A., “Moduli space of polarized algebraic manifolds and Kähler metrics”, Sugaku Expositions, 5 (1992), 173–191, arXiv: 1810.02576 | MR
[20] Garcia-Fernandez M., Coupled equations for Kähler metrics and Yang–Mills connections, Ph.D. Thesis, Instituto de Ciencias Matemáticas, Madrid, 2009, arXiv: 1102.0985
[21] Garcia-Fernandez M., Pritham Pingali V., Yao C., “Gravitating vortices with positive curvature”, Adv. Math., 388 (2021), 107851, 42 pp., arXiv: 1911.09616 | DOI | MR | Zbl
[22] Garcia-Fernandez M., Tipler C., “Deformation of complex structures and the coupled Kähler–Yang–Mills equations”, J. Lond. Math. Soc., 89 (2014), 779–796, arXiv: 1301.4480 | DOI | MR | Zbl
[23] García-Prada O., “Invariant connections and vortices”, Comm. Math. Phys., 156 (1993), 527–546 | DOI | MR | Zbl
[24] García-Prada O., “Dimensional reduction of stable bundles, vortices and stable pairs”, Internat. J. Math., 5 (1994), 1–52 | DOI | MR | Zbl
[25] García-Prada O., “A direct existence proof for the vortex equations over a compact Riemann surface”, Bull. Lond. Math. Soc., 26 (1994), 88–96 | DOI | MR | Zbl
[26] García-Prada O., Heinloth J., “The $y$-genus of the moduli space of ${\rm PGL}_n$-{H}iggs bundles on a curve (for degree coprime to $n$)”, Duke Math. J., 162 (2013), 2731–2749, arXiv: 1207.5614 | DOI | MR | Zbl
[27] García-Prada O., Heinloth J., Schmitt A., “On the motives of moduli of chains and Higgs bundles”, J. Eur. Math. Soc. (JEMS), 16 (2014), 2617–2668, arXiv: 1104.5558 | DOI | MR | Zbl
[28] Jaffe A., Taubes C., Vortices and monopoles: Structure of static gauge theories, Prog. Phys., 2, Birkhäuser, Boston, MA, 1980 | MR | Zbl
[29] Kazdan J.L., Warner F.W., “Curvature functions for compact $2$-manifolds”, Ann. of Math., 99 (1974), 14–47 | DOI | MR | Zbl
[30] Keller J., Tønnesen-Friedman C.W., “Nontrivial examples of coupled equations for Kähler metrics and Yang–Mills connections”, Cent. Eur. J. Math., 10 (2012), 1673–1687, arXiv: 1109.5085 | DOI | MR | Zbl
[31] Linet B., “A vortex-line model for infinite straight cosmic strings”, Phys. Lett. A, 124 (1987), 240–242 | DOI | MR
[32] Linet B., “On the supermassive ${\rm U}(1)$ gauge cosmic strings”, Classical Quantum Gravity, 7 (1990), L75–L79 | DOI | MR | Zbl
[33] Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, 3rd ed., Ergeb. Math. Grenzgeb. (2), Vol. 34, Springer, Berlin, 1994 | MR | Zbl
[34] Narasimhan M.S., Seshadri C.S., “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math., 82 (1965), 540–567 | DOI | MR | Zbl
[35] Nielsen H.B., Olesen P., “Vortex-line models for dual strings”, Nuclear Phys. B, 61 (1973), 45–61 | DOI
[36] Noguchi M., “Yang–Mills–Higgs theory on a compact Riemann surface”, J. Math. Phys., 28 (1987), 2343–2346 | DOI | MR | Zbl
[37] Taubes C.H., Arbitrary $N$-vortex solutions to the first order Ginzburg–Landau equations, Comm. Math. Phys., 72 (1980), 277–292 | DOI | MR | Zbl
[38] Taubes C.H., “On the equivalence of the first and second order equations for gauge theories”, Comm. Math. Phys., 75 (1980), 207–227 | DOI | MR | Zbl
[39] Uhlenbeck K., Yau S.-T., “On the existence of Hermitian–Yang–Mills connections in stable vector bundles”, Comm. Pure Appl. Math., 39 (1986), 257–293 | DOI | MR
[40] Uhlenbeck K., Yau S.-T., “A note on our previous paper: “On the existence of Hermitian–Yang–Mills connections in stable vector bundles””, Comm. Pure Appl. Math., 42 (1989), 703–707 | DOI | MR | Zbl
[41] Witten E., “Some exact multi-pseudoparticle solutions of classical Yang–Mills theory”, Phys. Rev. Lett., 38 (1977), 121–124 | DOI
[42] Yang Y.S., “An equivalence theorem for string solutions of the Einstein matter-gauge equations”, Lett. Math. Phys., 26 (1992), 79–90 | DOI | MR | Zbl
[43] Yang Y.S., “Self-duality of the gauge field equations and the cosmological constant”, Comm. Math. Phys., 162 (1994), 481–498 | DOI | MR | Zbl
[44] Yang Y.S., “Prescribing topological defects for the coupled Einstein and abelian Higgs equations”, Comm. Math. Phys., 170 (1995), 541–582 | DOI | MR | Zbl
[45] Yang Y.S., “Static cosmic strings on $S^2$ and criticality”, Proc. Roy. Soc. London Ser. A, 453 (1997), 581–591 | DOI | MR | Zbl