Transformations of Currents in Sigma-Models with Target Space Supersymmetry
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a framework for systematic study of symmetry transformations of sigma-model currents in a special situation, when symmetries have a well-defined projection onto the target space. We then apply this formalism to pure spinor sigma-models, and describe the resulting geometric structures in the target space (which in our approach includes the pure spinor ghosts). We perform a detailed study of the transformation properties of currents, using the formalism of equivariant cohomology. We clarify the descent procedure for the “universal” deformation corresponding to changing the overall scale of the worldsheet action. We also study the contact terms in the OPE of BRST currents, and derive some relations between currents and vertex operators which perhaps have not been previously acknowledged. We also clarify the geometrical meaning of the “minimalistic” BV action for pure spinors in AdS.
Keywords: sigma-models, conservation laws, equivariant cohomology.
Mots-clés : anomalies
@article{SIGMA_2024_20_a30,
     author = {Vinicius Bernardes and Andrei Mikhailov and Eggon Viana},
     title = {Transformations of {Currents} in {Sigma-Models} with {Target} {Space} {Supersymmetry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a30/}
}
TY  - JOUR
AU  - Vinicius Bernardes
AU  - Andrei Mikhailov
AU  - Eggon Viana
TI  - Transformations of Currents in Sigma-Models with Target Space Supersymmetry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a30/
LA  - en
ID  - SIGMA_2024_20_a30
ER  - 
%0 Journal Article
%A Vinicius Bernardes
%A Andrei Mikhailov
%A Eggon Viana
%T Transformations of Currents in Sigma-Models with Target Space Supersymmetry
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a30/
%G en
%F SIGMA_2024_20_a30
Vinicius Bernardes; Andrei Mikhailov; Eggon Viana. Transformations of Currents in Sigma-Models with Target Space Supersymmetry. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a30/

[1] Alekseev A., Strobl T., “Current algebras and differential geometry”, J. High Energy Phys., 2005:3 (2005), 035, 14 pp., arXiv: hep-th/0410183 | DOI | MR

[2] Alexandrov M., Schwarz A., Zaboronsky O., Kontsevich M., “The geometry of the master equation and topological quantum field theory”, Internat. J. Modern Phys. A, 12 (1997), 1405–1429, arXiv: hep-th/9502010 | DOI | MR | Zbl

[3] Berkovits N., “Super-Poincaré covariant quantization of the superstring”, J. High Energy Phys., 2000:4 (2000), 018, 17 pp., arXiv: hep-th/0001035 | DOI | MR | Zbl

[4] Berkovits N., Simplifying and extending the ${\rm AdS}_5\times S^5$ pure spinor formalism, J. High Energy Phys., 2009:9 (2009), 051, 34 pp., arXiv: 0812.5074 | DOI | MR

[5] Berkovits N., “Sketching a proof of the Maldacena conjecture at small radius”, J. High Energy Phys., 2019:6 (2019), 111, 14 pp., arXiv: 1903.08264 | DOI | MR

[6] Berkovits N., Howe P., “Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring”, Nuclear Phys. B, 635 (2002), 75–105, arXiv: hep-th/0112160 | DOI | MR | Zbl

[7] Blohmann C., “The homotopy momentum map of general relativity”, Int. Math. Res. Not., 2023 (2023), 8212–8250, arXiv: 2103.07670 | DOI | MR | Zbl

[8] Cordes S., Moore G., Ramgoolam S., “Lectures on $2$D Yang–Mills theory, equivariant cohomology and topological field theories”, Nuclear Phys. B Proc. Suppl., 41 (1995), 184–244, arXiv: hep-th/9411210 | DOI | MR | Zbl

[9] Deligne P., Etingof P., Freed D.S., Jeffrey L.C., Kazhdan D., Morgan J.W., Morrison D.R., Witten E. (Editors), Quantum fields and strings: A course for mathematicians, v. 1, 2, American Mathematical Society, 1999 | MR | Zbl

[10] Feigin B.L., Fuchs D.B., “Cohomology of Lie groups and Lie algebras”, Current Problems in Mathematics. Fundamental Directions, 21, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., M., 1988, 121–209 | MR

[11] Gelfand S.I., Manin Yu.I., Methods of homological algebra, Springer Monogr. Math., 2nd ed., Springer, Berlin, 2003 | DOI | MR | Zbl

[12] Knapp A.W., Lie groups, Lie algebras, and cohomology, Math. Notes, 34, Princeton University Press, Princeton, NJ, 1988 | DOI | MR | Zbl

[13] Mikhailov A., “Cornering the unphysical vertex”, J. High Energy Phys., 2012:11 (2012), 082, 31 pp., arXiv: 1203.0677 | DOI

[14] Mikhailov A., “A minimalistic pure spinor sigma-model in AdS”, J. High Energy Phys., 2018:7 (2018), 155, 29 pp., arXiv: 1706.08158 | DOI | MR | Zbl

[15] Suszek R.R., Equivariant Cartan–Eilenberg supergerbes for the Green–Schwarz superbranes III The wrapping anomaly and the super-${\rm AdS}_5\times\mathbb{S}^5$ background, arXiv: 1808.04470

[16] Suszek R.R., Equivariant Cartan–Eilenberg supergerbes II Equivariance in the super-Minkowskian setting, arXiv: 1905.05235

[17] Witten E., “On holomorphic factorization of WZW and coset models”, Comm. Math. Phys., 144 (1992), 189–212 | DOI | MR | Zbl

[18] Zavaleta D., Pure spinor string and generalized geometry, arXiv: 1906.05784