Mots-clés : anomalies
@article{SIGMA_2024_20_a30,
author = {Vinicius Bernardes and Andrei Mikhailov and Eggon Viana},
title = {Transformations of {Currents} in {Sigma-Models} with {Target} {Space} {Supersymmetry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a30/}
}
TY - JOUR AU - Vinicius Bernardes AU - Andrei Mikhailov AU - Eggon Viana TI - Transformations of Currents in Sigma-Models with Target Space Supersymmetry JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a30/ LA - en ID - SIGMA_2024_20_a30 ER -
%0 Journal Article %A Vinicius Bernardes %A Andrei Mikhailov %A Eggon Viana %T Transformations of Currents in Sigma-Models with Target Space Supersymmetry %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a30/ %G en %F SIGMA_2024_20_a30
Vinicius Bernardes; Andrei Mikhailov; Eggon Viana. Transformations of Currents in Sigma-Models with Target Space Supersymmetry. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a30/
[1] Alekseev A., Strobl T., “Current algebras and differential geometry”, J. High Energy Phys., 2005:3 (2005), 035, 14 pp., arXiv: hep-th/0410183 | DOI | MR
[2] Alexandrov M., Schwarz A., Zaboronsky O., Kontsevich M., “The geometry of the master equation and topological quantum field theory”, Internat. J. Modern Phys. A, 12 (1997), 1405–1429, arXiv: hep-th/9502010 | DOI | MR | Zbl
[3] Berkovits N., “Super-Poincaré covariant quantization of the superstring”, J. High Energy Phys., 2000:4 (2000), 018, 17 pp., arXiv: hep-th/0001035 | DOI | MR | Zbl
[4] Berkovits N., Simplifying and extending the ${\rm AdS}_5\times S^5$ pure spinor formalism, J. High Energy Phys., 2009:9 (2009), 051, 34 pp., arXiv: 0812.5074 | DOI | MR
[5] Berkovits N., “Sketching a proof of the Maldacena conjecture at small radius”, J. High Energy Phys., 2019:6 (2019), 111, 14 pp., arXiv: 1903.08264 | DOI | MR
[6] Berkovits N., Howe P., “Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring”, Nuclear Phys. B, 635 (2002), 75–105, arXiv: hep-th/0112160 | DOI | MR | Zbl
[7] Blohmann C., “The homotopy momentum map of general relativity”, Int. Math. Res. Not., 2023 (2023), 8212–8250, arXiv: 2103.07670 | DOI | MR | Zbl
[8] Cordes S., Moore G., Ramgoolam S., “Lectures on $2$D Yang–Mills theory, equivariant cohomology and topological field theories”, Nuclear Phys. B Proc. Suppl., 41 (1995), 184–244, arXiv: hep-th/9411210 | DOI | MR | Zbl
[9] Deligne P., Etingof P., Freed D.S., Jeffrey L.C., Kazhdan D., Morgan J.W., Morrison D.R., Witten E. (Editors), Quantum fields and strings: A course for mathematicians, v. 1, 2, American Mathematical Society, 1999 | MR | Zbl
[10] Feigin B.L., Fuchs D.B., “Cohomology of Lie groups and Lie algebras”, Current Problems in Mathematics. Fundamental Directions, 21, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., M., 1988, 121–209 | MR
[11] Gelfand S.I., Manin Yu.I., Methods of homological algebra, Springer Monogr. Math., 2nd ed., Springer, Berlin, 2003 | DOI | MR | Zbl
[12] Knapp A.W., Lie groups, Lie algebras, and cohomology, Math. Notes, 34, Princeton University Press, Princeton, NJ, 1988 | DOI | MR | Zbl
[13] Mikhailov A., “Cornering the unphysical vertex”, J. High Energy Phys., 2012:11 (2012), 082, 31 pp., arXiv: 1203.0677 | DOI
[14] Mikhailov A., “A minimalistic pure spinor sigma-model in AdS”, J. High Energy Phys., 2018:7 (2018), 155, 29 pp., arXiv: 1706.08158 | DOI | MR | Zbl
[15] Suszek R.R., Equivariant Cartan–Eilenberg supergerbes for the Green–Schwarz superbranes III The wrapping anomaly and the super-${\rm AdS}_5\times\mathbb{S}^5$ background, arXiv: 1808.04470
[16] Suszek R.R., Equivariant Cartan–Eilenberg supergerbes II Equivariance in the super-Minkowskian setting, arXiv: 1905.05235
[17] Witten E., “On holomorphic factorization of WZW and coset models”, Comm. Math. Phys., 144 (1992), 189–212 | DOI | MR | Zbl
[18] Zavaleta D., Pure spinor string and generalized geometry, arXiv: 1906.05784