Recurrence Coefficients for Orthogonal Polynomials with a Logarithmic Weight Function
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove an asymptotic formula for the recurrence coefficients of orthogonal polynomials with orthogonality measure $\log \bigl(\frac{2}{1-x}\bigr) {\rm d}x$ on $(-1,1)$. The asymptotic formula confirms a special case of a conjecture by Magnus and extends earlier results by Conway and one of the authors. The proof relies on the Riemann–Hilbert method. The main difficulty in applying the method to the problem at hand is the lack of an appropriate local parametrix near the logarithmic singularity at $x = +1$.
Keywords: Riemann–Hilbert problems, recurrence coefficients, steepest descent method.
Mots-clés : orthogonal polynomials
@article{SIGMA_2024_20_a3,
     author = {Percy Deift and Mateusz Piorkowski},
     title = {Recurrence {Coefficients} for {Orthogonal} {Polynomials} with a {Logarithmic} {Weight} {Function}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a3/}
}
TY  - JOUR
AU  - Percy Deift
AU  - Mateusz Piorkowski
TI  - Recurrence Coefficients for Orthogonal Polynomials with a Logarithmic Weight Function
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a3/
LA  - en
ID  - SIGMA_2024_20_a3
ER  - 
%0 Journal Article
%A Percy Deift
%A Mateusz Piorkowski
%T Recurrence Coefficients for Orthogonal Polynomials with a Logarithmic Weight Function
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a3/
%G en
%F SIGMA_2024_20_a3
Percy Deift; Mateusz Piorkowski. Recurrence Coefficients for Orthogonal Polynomials with a Logarithmic Weight Function. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a3/

[1] Baratchart L., Yattselev M., “Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights”, Int. Math. Res. Not., 2010 (2010), 4211–4275, arXiv: 0911.3850 | DOI | MR | Zbl

[2] Bleher P., Its A., “Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model”, Ann. of Math., 150 (1999), 185–266, arXiv: math-ph/9907025 | DOI | MR | Zbl

[3] Böttcher A., Karlovich Yu.I., Carleson curves, Muckenhoupt weights, and Toeplitz operators, Progr. Math., 154, Birkhäuser, Basel, 1997 | DOI | MR | Zbl

[4] Conway T.O., Deift P., “Asymptotics of polynomials orthogonal with respect to a logarithmic weight”, SIGMA, 14 (2018), 056, 66 pp., arXiv: 1711.01590 | DOI | MR | Zbl

[5] Deift P., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, American Mathematical Society, Providence, RI, 1999 | MR

[6] Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X., “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52 (1999), 1491–1552 | 3.3.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math., 137 (1993), 295–368 | DOI | MR | Zbl

[9] Deift P., Zhou X., “Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space”, Comm. Pure Appl. Math., 56 (2003), 1029–1077, arXiv: math.AP/0206222 | DOI | MR | Zbl

[10] Fokas A.S., Its A.R., Kitaev A.V., “The isomonodromy approach to matrix models in $2$D quantum gravity”, Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR | Zbl

[11] Kriecherbauer T., McLaughlin K.T.-R., “Strong asymptotics of polynomials orthogonal with respect to Freud weights”, Int. Math. Res. Not., 1999 (1999), 299–333 | DOI | MR | Zbl

[12] Kuijlaars A.B.J., McLaughlin K.T.-R., Van Assche W., Vanlessen M., “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188 (2004), 337–398, arXiv: math.CA/0111252 | DOI | MR | Zbl

[13] Lenard A., “Some remarks on large Toeplitz determinants”, Pacific J. Math., 42 (1972), 137–145 | DOI | MR | Zbl

[14] Lenells J., “Matrix Riemann–Hilbert problems with jumps across Carleson contours”, Monatsh. Math., 186 (2018), 111–152, arXiv: 1401.2506 | DOI | MR | Zbl

[15] Magnus A.P., “Gaussian integration formulas for logarithmic weights and application to 2-dimensional solid-state lattices”, J. Approx. Theory, 228 (2018), 21–57 | DOI | MR | Zbl

[16] McLaughlin K.T.-R., Miller P.D., “The $\overline{\partial}$ steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights”, Int. Math. Res. Pap., 2006 (2006), 48673, 77 pp., arXiv: math.CA/0406484 | DOI | MR | Zbl

[17] McLaughlin K.T.-R., Miller P.D., “The $\overline{\partial}$ steepest descent method for orthogonal polynomials on the real line with varying weights”, Int. Math. Res. Not., 2008 (2008), rnn075, 66 pp., arXiv: 0805.1980 | DOI | MR | Zbl

[18] Olver F.W.J., Olde Daalhuis A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V., Cohl H.S., McClain M.A., NIST digital library of mathematical functions, Release 1.1.5 of 2022-03-15 http://dlmf.nist.gov/

[19] Piorkowski M., “Riemann–Hilbert theory without local parametrix problems: applications to orthogonal polynomials”, J. Math. Anal. Appl., 504 (2021), 125495, 23 pp., arXiv: 2021.12549 | DOI | MR | Zbl

[20] Van Assche W., “Hermite–Padé rational approximation to irrational numbers”, Comput. Methods Funct. Theory, 10 (2010), 585–602 | DOI | MR | Zbl

[21] Yattselev M.L., “On smooth perturbations of Chebyshëv polynomials and $\bar {\partial } $-Riemann–Hilbert method”, Canad. Math. Bull., 66 (2023), 142–155, arXiv: 2202.10374 | DOI | MR | Zbl