Locally Homogeneous Holomorphic Geometric Structures on Projective Varieties
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For any smooth projective variety with holomorphic locally homogeneous structure modelled on a homogeneous algebraic variety, we determine all the subvarieties of it which develop to the model.
Keywords: complex projective manifold, Cartan geometry
Mots-clés : Moishezon manifold.
@article{SIGMA_2024_20_a29,
     author = {Indranil Biswas and Benjamin McKay},
     title = {Locally {Homogeneous} {Holomorphic} {Geometric} {Structures} on {Projective} {Varieties}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a29/}
}
TY  - JOUR
AU  - Indranil Biswas
AU  - Benjamin McKay
TI  - Locally Homogeneous Holomorphic Geometric Structures on Projective Varieties
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a29/
LA  - en
ID  - SIGMA_2024_20_a29
ER  - 
%0 Journal Article
%A Indranil Biswas
%A Benjamin McKay
%T Locally Homogeneous Holomorphic Geometric Structures on Projective Varieties
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a29/
%G en
%F SIGMA_2024_20_a29
Indranil Biswas; Benjamin McKay. Locally Homogeneous Holomorphic Geometric Structures on Projective Varieties. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a29/

[1] Alekseevsky D.V., “Flag manifolds”, Zb. Rad. Mat. Inst. Beograd. (N.S.), 6 (1997), 3–35 | MR | Zbl

[2] Atiyah M.F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl

[3] Atiyah M.F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl

[4] Biswas I., Dumitrescu S., “Holomorphic Cartan geometries on complex tori”, C. R. Math. Acad. Sci. Paris, 356 (2018), 316–321, arXiv: 1710.05874 | DOI | MR | Zbl

[5] Biswas I., Gómez T.L., “Connections and Higgs fields on a principal bundle”, Ann. Global Anal. Geom., 33 (2008), 19–46 | DOI | MR | Zbl

[6] Biswas I., McKay B., “Holomorphic Cartan geometries, Calabi–Yau manifolds and rational curves”, Differential Geom. Appl., 28 (2010), 102–106, arXiv: 1009.5801 | DOI | MR | Zbl

[7] Biswas I., McKay B., “Holomorphic Cartan geometries and rational curves”, Complex Manifolds, 3 (2016), 145–168, arXiv: 1005.1472 | DOI | MR | Zbl

[8] Bogomolov F.A., “On the decomposition of Kähler manifolds with a trivial canonical class”, Math. USSR Sb., 22 (1974), 580–583 | DOI | MR

[9] Borel A., Linear algebraic groups, Grad. Texts Math., 126, 2nd ed., Springer, New York, 1991 | DOI | MR | Zbl

[10] Campana F., “Connexité rationnelle des variétés de Fano”, Ann. Sci. École Norm. Sup. (4), 25 (1992), 539–545 | DOI | MR | Zbl

[11] Campana F., Claudon B., Eyssidieux P., “Représentations linéaires des groupes kählériens: factorisations et conjecture de Shafarevich linéaire”, Compos. Math., 151 (2015), 351–376, arXiv: 1302.5016 | DOI | MR | Zbl

[12] Čap A., Slovák J., Parabolic geometries, v. I, Math. Surv. Monogr., 154, Background and general theory, American Mathematical Society, Providence, RI, 2009 | DOI | MR | Zbl

[13] Cartan É., La méthode de repère mobile, la théorie des groupes continus, et les espaces généralisés, Actualités Sci. Industrielles, 194, Hermann, Paris, 1935 | MR

[14] Cascini P., “Rational curves on complex manifolds”, Milan J. Math., 81 (2013), 291–315 | DOI | MR | Zbl

[15] Douady A., “Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné”, Ann. Inst. Fourier (Grenoble), 16 (1966), 1–95 | DOI | MR | Zbl

[16] Ehresmann C., “Les connexions infinitésimales dans un espace fibré différentiable”, Colloque de Topologie, Georges Thone, Liège, 1951, 29–55 | MR

[17] Fujiki A., “On the structure of compact complex manifolds in ${\mathcal C}$”, Algebraic Varieties and Analytic Varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 231–302 | DOI | MR

[18] Goldman W.M., “Locally homogeneous geometric manifolds”, Proceedings of the International Congress of Mathematicians, v. II, Hindustan Book Agency, New Delhi, 2010, 717–744, arXiv: 1003.2759 | DOI | MR

[19] Grauert H., Peternell T., Remmert R. (Editors), Several complex variable, v. VII, Encycl. Math. Sci., 74, Springer, Berlin, 1994 | DOI | MR

[20] Grauert H., Remmert R., Coherent analytic sheaves, Grundlehren Math. Wiss., 265, Springer, Berlin, 1984 | DOI | MR | Zbl

[21] Grauert H., Remmert R., Theory of Stein spaces, Class. Math., Springer, Berlin, 2004 | DOI | MR | Zbl

[22] Hartshorne R., Algebraic geometry, Grad. Texts Math., 52, Springer, New York, 1977 | DOI | MR | Zbl

[23] Hilgert J., Neeb K.-H., Structure and geometry of Lie groups, Springer Monogr. Math., Springer, New York, 2012 | DOI | MR | Zbl

[24] Hochschild G.P., Basic theory of algebraic groups and Lie algebras, Grad. Texts Math., 75, Springer, New York, 1981 | DOI | MR | Zbl

[25] Hörmander L., An introduction to complex analysis in several variables, North-Holland Math. Libr., 7, 3rd ed., North-Holland Publishing Co., Amsterdam, 1990 | DOI | MR | Zbl

[26] Huckleberry A.T., “The classification of homogeneous surfaces”, Exposition. Math., 4 (1986), 289–334 | MR | Zbl

[27] Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, Camb. Math. Libr., 2nd ed., Cambridge University Press, Cambridge, 2010 | DOI | MR | Zbl

[28] Iitaka S., Algebraic geometry, North-Holland Math. Libr., 24, Springer, New York, 1982 | MR

[29] Jacobson N., Basic algebra, v. I, 2nd ed., W. H. Freeman and Company, New York, 1985 | MR | Zbl

[30] Jahnke P., Radloff I., “Projective uniformization, extremal Chern classes and quaternionic Shimura curves”, Math. Ann., 363 (2015), 753–776, arXiv: 1404.2848 | DOI | MR

[31] Katzarkov L., “On the Shafarevich maps”, Algebraic Geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, American Mathematical Society, Providence, RI, 1997, 173–216 | DOI | MR | Zbl

[32] Katzarkov L., “The geometry of large fundamental groups”, J. Math. Sci. (New York), 94 (1999), 1100–1110 | DOI | MR | Zbl

[33] Kawamata Y., “Minimal models and the {K}odaira dimension of algebraic fiber spaces”, J. Reine Angew. Math., 363 (1985), 1–46 | DOI | MR | Zbl

[34] Kawamata Y., “On the length of an extremal rational curve”, Invent. Math., 105 (1991), 609–611 | DOI | MR | Zbl

[35] Kobayashi S., Differential geometry of complex vector bundles, Publ. Math. Soc. Japan, 15, Princeton University Press, Princeton, NJ, 1987 | DOI | MR | Zbl

[36] Kobayashi S., Ochiai T., “Holomorphic projective structures on compact complex surfaces”, Math. Ann., 249 (1980), 75–94 | DOI | MR | Zbl

[37] Kollár J., “Shafarevich maps and plurigenera of algebraic varieties”, Invent. Math., 113 (1993), 177–215 | DOI | MR | Zbl

[38] Kollár J., Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), 32, Springer, Berlin, 1996 | DOI | MR

[39] Lai C.-J., “Varieties fibered by good minimal models”, Math. Ann., 350 (2011), 533–547, arXiv: 0912.3012 | DOI | MR | Zbl

[40] Lazarsfeld R., Positivity in algebraic geometry, v. I, Ergeb. Math. Grenzgeb. (3), 48, Classical setting: line bundles and linear series, Springer, Berlin, 2004 | DOI | MR | Zbl

[41] Loray F., Pereira J.V., Touzet F., “Singular foliations with trivial canonical class”, Invent. Math., 213 (2018), 1327–1380, arXiv: 1107.1538 | DOI | MR | Zbl

[42] Matsushima Y., Morimoto A., “Sur certains espaces fibrés holomorphes sur une variété de Stein”, Bull. Soc. Math. France, 88 (1960), 137–155 | DOI | MR | Zbl

[43] McKay B., “Holomorphic Cartan geometries on uniruled surfaces”, C. R. Math. Acad. Sci. Paris, 349 (2011), 893–896, arXiv: 1105.4732 | DOI | MR | Zbl

[44] McKay B., “Complex homogeneous surfaces”, J. Lie Theory, 25 (2015), 579–612, arXiv: 1406.2487 | MR

[45] McKay B., “The Hartogs extension problem for holomorphic parabolic and reductive geometries”, Monatsh. Math., 181 (2016), 689–713, arXiv: 1302.5796 | DOI | MR | Zbl

[46] McKay B., “Holomorphic geometric structures on Kähler–Einstein manifolds”, Manuscripta Math., 153 (2017), 1–34, arXiv: 1308.1613 | DOI | MR | Zbl

[47] McKay B., An introduction to Cartan geometries, arXiv: 2302.14457

[48] Milne J.S., Algebraic groups, Camb. Stud. Adv. Math., 170, Cambridge University Press, Cambridge, 2017 | DOI | MR | Zbl

[49] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Ann. of Math., 116 (1982), 133–176 | DOI | MR | Zbl

[50] Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, Ergeb. Math. Grenzgeb. (2), 34, 3rd ed., Springer, Berlin, 1994 | MR | Zbl

[51] Onishchik A.L., Vinberg E.B. (Editors), Lie groups and Lie algebras, v. III, Encyclopaedia Math. Sci., 41, Structure of Lie groups and Lie algebras, Springer, Berlin, 1994 | DOI | MR | Zbl

[52] Pereira J.V., Touzet F., “Foliations with vanishing Chern classes”, Bull. Braz. Math. Soc. (N.S.), 44 (2013), 731–754, arXiv: 1210.5916 | DOI | MR | Zbl

[53] Procesi C., Lie groups: An approach through invariants and representations, Universitext, Springer, New York, 2007 | DOI | MR | Zbl

[54] Rinow W., “Über Zusammenhänge zwischen der Differentialgeometrie im Großen und im Kleinen”, Math. Z., 35 (1932), 512–528 | DOI | MR | Zbl

[55] Serre J.-P., Complex semisimple Lie algebras, Springer Monogr. Math., Springer, Berlin, 2001 | DOI | MR | Zbl

[56] Sharpe R.W., Differential geometry: Cartan's generalization of Klein's Erlangen program, Grad. Texts Math., 166, Springer, New York, 1997 | MR

[57] Sharpe R.W., “An introduction to Cartan geometries”, Rend. Circ. Mat. Palermo (2) Suppl., 2002, 61–75 | MR | Zbl

[58] Siu Y.-T., “Abundance conjecture”, Geometry and analysis, v. 2, Adv. Lect. Math. (ALM), 18, International Press, Somerville, MA, 2011, 271–317, arXiv: 0912.0576 | MR | Zbl

[59] Springer T.A., Linear algebraic groups, Mod. Birkhäuser Class., 2nd ed., Birkhäuser, Boston, MA, 2009 | DOI | MR | Zbl

[60] Ueno K., Classification theory of algebraic varieties and compact complex spaces, Lect. Notes Math., 439, Springer, Berlin, 1975 | DOI | MR | Zbl

[61] Varouchas J., “Kähler spaces and proper open morphisms”, Math. Ann., 283 (1989), 13–52 | DOI | MR | Zbl

[62] Voisin C., Hodge theory and complex algebraic geometry, v. I, Camb. Stud. Adv. Math., 76, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl

[63] Zuo K., Representations of fundamental groups of algebraic varieties, Lect. Notes Math., 1708, Springer, Berlin, 1999 | DOI | MR | Zbl