Mots-clés : Frobenius structures
@article{SIGMA_2024_20_a28,
author = {Todor Milanov and Xiaokun Xia},
title = {Reflection {Vectors} and {Quantum} {Cohomology} of {Blowups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a28/}
}
Todor Milanov; Xiaokun Xia. Reflection Vectors and Quantum Cohomology of Blowups. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a28/
[1] Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of differentiable maps, v. II, Monog. Math., 82, Monodromy and asymptotics of integrals, Birkhäuser, Boston, MA, 2012 | DOI | MR
[2] Bateman H., Erdélyi A., Higher transcendental functions, v. I, McGraw-Hill Book Co., Inc., New York, 1953 | MR
[3] Bayer A., “Semisimple quantum cohomology and blowups”, Int. Math. Res. Not., 2004 (2004), 2069–2083, arXiv: math.AG/0403260 | DOI | MR | Zbl
[4] Behrend K., “Gromov–Witten invariants in algebraic geometry”, Invent. Math., 127 (1997), 601–617, arXiv: alg-geom/9601011 | DOI | MR | Zbl
[5] Behrend K., Fantechi B., “The intrinsic normal cone”, Invent. Math., 128 (1997), 45–88, arXiv: alg-geom/9601010 | DOI | MR | Zbl
[6] Behrend K., Manin Yu., “Stacks of stable maps and Gromov–Witten invariants”, Duke Math. J., 85 (1996), 1–60, arXiv: alg-geom/9506023 | DOI | MR | Zbl
[7] Cotti G., “Degenerate Riemann–Hilbert–Birkhoff problems, semisimplicity, and convergence of WDVV-potentials”, Lett. Math. Phys., 111 (2021), 99, 44 pp., arXiv: 2011.04498 | DOI | MR | Zbl
[8] Dixon A.L., Ferrar W.L., “A class of discontinuous integrals”, Quart. J. Math., 7 (1936), 81–96 | DOI | MR | Zbl
[9] Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl
[10] Dubrovin B., “Geometry and analytic theory of Frobenius manifolds”, Doc. Math., 2 (1998), 315–326, arXiv: math.AG/9807034 | MR
[11] Dubrovin B., “Painlevé transcendents in two-dimensional topological field theory”, The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 287–412, arXiv: math.AG/9803107 | DOI | MR | Zbl
[12] Dubrovin B., Zhang Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, arXiv: math.DG/0108160
[13] Fomenko A., Fuchs D., Homotopical topology, Grad. Texts in Math., 273, 2nd ed., Springer, Cham, 2016 | DOI | MR | Zbl
[14] Frenkel E., Givental A., Milanov T., “Soliton equations, vertex operators, and simple singularities”, Funct. Anal. Other Math., 3 (2010), 47–63, arXiv: 0909.4032 | DOI | MR | Zbl
[15] Fulton W., Intersection theory, Ergeb. Math. Grenzgeb. (3), 2nd ed., Springer, Berlin, 1998 | DOI | MR | Zbl
[16] Galkin S., Golyshev V., Iritani H., “Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures”, Duke Math. J., 165 (2016), 2005–2077, arXiv: 1404.6407 | DOI | MR | Zbl
[17] Gathmann A., “Gromov–Witten invariants of blow-ups”, J. Algebraic Geom., 10 (2001), 399–432, arXiv: math.AG/9804043 | MR | Zbl
[18] Gelfand S.I., Manin Yu.I., Methods of homological algebra, Springer Monog. Math., 2nd ed., Springer, Berlin, 2003 | DOI | MR | Zbl
[19] Givental A., “$A_{n-1}$ singularities and $n$KdV hierarchies”, Mosc. Math. J., 3 (2003), 475–505, arXiv: math.AG/0209205 | DOI | MR | Zbl
[20] Givental A.B., “Gromov–Witten invariants and quantization of quadratic Hamiltonians”, Mosc. Math. J., 1 (2001), 551–568, arXiv: math.AG/0108100 | DOI | MR | Zbl
[21] Givental A.B., Milanov T.E., “Simple singularities and integrable hierarchies”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser, Boston, MA, 2005, 173–201, arXiv: math.AG/0307176 | DOI | MR
[22] Grauert H., Remmert R., Coherent analytic sheaves, Grundlehren Math. Wiss., 265, Springer, Berlin, 1984 | DOI | MR | Zbl
[23] Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Math., 151, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl
[24] Hertling C., Manin Yu.I., Teleman C., “An update on semisimple quantum cohomology and $F$-manifolds”, Proc. Steklov Inst. Math., 264 (2009), 62–69, arXiv: 0803.2769 | DOI | MR | Zbl
[25] Iritani H., “An integral structure in quantum cohomology and mirror symmetry for toric orbifolds”, Adv. Math., 222 (2009), 1016–1079, arXiv: 0903.1463 | DOI | MR | Zbl
[26] Manin Yu.I., Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloquium Publications, 47, American Mathematical Society, Providence, RI, 1999 | DOI | MR | Zbl
[27] Manin Yu.I., Merkulov S.A., “Semisimple Frobenius (super)manifolds and quantum cohomology of ${\mathbf P}^r$”, Topol. Methods Nonlinear Anal., 9 (1997), 107–161, arXiv: alg-geom/9702014 | DOI | MR | Zbl
[28] Milanov T., “The period map for quantum cohomology of $\mathbb{P}^2$”, Adv. Math., 351 (2019), 804–869, arXiv: 1706.04323 | DOI | MR | Zbl
[29] Milanov T., Saito K., Primitive forms and vertex operators, in preparation
[30] Nori M.V., “Zariski's conjecture and related problems”, Ann. Sci. École Norm. Sup., 16 (1983), 305–344 | DOI | MR | Zbl
[31] Orlov D.O., “Projective bundles, monoidal transformations, and derived categories of coherent sheaves”, Russian Acad. Sci. Izv. Math., 41 (1993), 133–141 | DOI | MR
[32] Paris R.B., Kaminski D., Asymptotics and Mellin–Barnes integrals, Encyclopedia of Math. Appl., 85, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl
[33] Saito K., “Period mapping associated to a primitive form”, Publ. Res. Inst. Math. Sci., 19 (1983), 1231–1264 | DOI | MR | Zbl
[34] Saito M., “On the structure of Brieskorn lattice”, Ann. Inst. Fourier (Grenoble), 39 (1989), 27–72 | DOI | MR | Zbl
[35] Shimada I., Lectures on Zariski Van-Kampen theorem http://www.math.sci.hiroshima-u.ac.jp/s̃himada/LectureNotes/LNZV.pdf