@article{SIGMA_2024_20_a27,
author = {Kohei Iwaki and Marcos Mari\~no},
title = {Resurgent {Structure} of the {Topological} {String} and the {First} {Painlev\'e} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a27/}
}
TY - JOUR AU - Kohei Iwaki AU - Marcos Mariño TI - Resurgent Structure of the Topological String and the First Painlevé Equation JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a27/ LA - en ID - SIGMA_2024_20_a27 ER -
Kohei Iwaki; Marcos Mariño. Resurgent Structure of the Topological String and the First Painlevé Equation. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a27/
[1] Alexandrov S., Marino M., Pioline B., Resurgence of refined topological strings and dual partition functions, arXiv: 2311.17638
[2] Alexandrov S., Persson D., Pioline B., “Fivebrane instantons, topological wave functions and hypermultiplet moduli spaces”, J. High Energy Phys., 2011:3 (2011), 111, 73 pp., arXiv: 1010.5792 | DOI | MR
[3] Alexandrov S., Pioline B., “Theta series, wall-crossing and quantum dilogarithm identities”, Lett. Math. Phys., 106 (2016), 1037–1066, arXiv: 1511.02892 | DOI | MR | Zbl
[4] Alim M., Saha A., Teschner J., Tulli I., “Mathematical structures of non-perturbative topological string theory: from GW to DT invariants”, Comm. Math. Phys., 399 (2023), 1039–1101, arXiv: 2109.06878 | DOI | MR
[5] Baldino S., Schiappa R., Schwick M., Vega R., “Resurgent Stokes data for Painlevé equations and two-dimensional quantum (super) gravity”, Commun. Number Theory Phys., 17 (2023), 385–552, arXiv: 2203.13726 | DOI | MR
[6] Bershadsky M., Cecotti S., Ooguri H., Vafa C., “Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes”, Comm. Math. Phys., 165 (1994), 311–427, arXiv: hep-th/9309140 | DOI | MR | Zbl
[7] Bertola M., Korotkin D., “Tau-functions and monodromy symplectomorphisms”, Comm. Math. Phys., 388 (2021), 245–290, arXiv: 1910.03370 | DOI | MR
[8] Boalch P., “Quasi-Hamiltonian geometry of meromorphic connections”, Duke Math. J., 139 (2007), 369–405, arXiv: math/0203161 | DOI | MR | Zbl
[9] Bonelli G., Lisovyy O., Maruyoshi K., Sciarappa A., Tanzini A., “On Painlevé/gauge theory correspondence”, Lett. Math. Phys., 107 (2017), 2359–2413, arXiv: 1612.06235 | DOI | MR | Zbl
[10] Bouchard V., Eynard B., “Reconstructing WKB from topological recursion”, J. Éc. Polytech. Math., 4 (2017), 845–908, arXiv: 1606.04498 | DOI | MR | Zbl
[11] Bouchard V., Klemm A., Mariño M., Pasquetti S., “Remodeling the B-model”, Comm. Math. Phys., 287 (2009), 117–178, arXiv: 0709.1453 | DOI | MR | Zbl
[12] Bridgeland T., Tau functions from Joyce structures, arXiv: 2303.07061
[13] Bridgeland T., “Riemann–Hilbert problems from Donaldson–Thomas theory”, Invent. Math., 216 (2019), 69–124, arXiv: 1611.03697 | DOI | MR | Zbl
[14] Bridgeland T., Masoero D., “On the monodromy of the deformed cubic oscillator”, Math. Ann., 385 (2023), 193–258, arXiv: 2006.10648 | DOI | MR | Zbl
[15] Bridgeland T., Smith I., “Quadratic differentials as stability conditions”, Publ. Math. Inst. Hautes Études Sci., 121 (2015), 155–278, arXiv: 1302.7030 | DOI | MR | Zbl
[16] Codesido S., A geometric approach to non-perturbative quantum mechanics, Ph.D. Thesis, University of Geneva, 2018
[17] Codesido S., Mariño M., Schiappa R., “Non-perturbative quantum mechanics from non-perturbative strings”, Ann. Henri Poincaré, 20 (2019), 543–603, arXiv: 1712.02603 | DOI | MR | Zbl
[18] Coman I., Longhi P., Teschner J., From quantum curves to topological string partition functions II, arXiv: 2004.04585
[19] Couso-Santamaría R., Edelstein J.D., Schiappa R., Vonk M., “Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local $\mathbb{CP}^2$”, Comm. Math. Phys., 338 (2015), 285–346, arXiv: 1407.4821 | DOI | MR | Zbl
[20] Couso-Santamaría R., Edelstein J.D., Schiappa R., Vonk M., “Resurgent transseries and the holomorphic anomaly”, Ann. Henri Poincaré, 17 (2016), 331–399, arXiv: 1308.1695 | DOI | MR | Zbl
[21] Couso-Santamaría R., Mariño M., Schiappa R., “Resurgence matches quantization”, J. Phys. A, 50 (2017), 145402, 34 pp., arXiv: 1610.06782 | DOI | MR | Zbl
[22] Del Monte F., Longhi P., “The threefold way to quantum periods: WKB, TBA equations and $q$-Painlevé”, SciPost Phys., 15 (2023), 112, 48 pp., arXiv: 2207.07135 | DOI | MR
[23] Delabaere E., Dillinger H., Pham F., “Résurgence de Voros et périodes des courbes hyperelliptiques”, Ann. Inst. Fourier (Grenoble), 43 (1993), 163–199 | DOI | MR | Zbl
[24] Delabaere E., Dillinger H., Pham F., “Exact semiclassical expansions for one-dimensional quantum oscillators”, J. Math. Phys., 38 (1997), 6126–6184 | DOI | MR | Zbl
[25] Delabaere E., Pham F., “Resurgent methods in semi-classical asymptotics”, Ann. Inst. H. Poincaré Phys. Théor., 71, 1999, 1–94 | MR | Zbl
[26] Dijkgraaf R., Vafa C., “Matrix models, topological strings, and supersymmetric gauge theories”, Nuclear Phys. B, 644 (2002), 3–20, arXiv: hep-th/0206255 | DOI | MR | Zbl
[27] Drukker N., Mariño M., Putrov P., “Nonperturbative aspects of ABJM theory”, J. High Energy Phys., 2011:11 (2011), 141, 29 pp., arXiv: 1103.4844 | DOI | MR | Zbl
[28] Dunster T.M., Lutz D.A., Schäfke R., “Convergent Liouville–Green expansions for second-order linear differential equations, with an application to Bessel functions”, Proc. Roy. Soc. London Ser. A, 440 (1993), 37–54 | DOI | MR | Zbl
[29] Écalle J., Les fonctions résurgentes appliquées à l'itération, Université de Paris-Sud, 1981 | MR
[30] Eynard B., Garcia-Failde E., “From topological recursion to wave functions and PDEs quantizing hyperelliptic curves”, Forum Math. Sigma, 11 (2023), e99, 42 pp., arXiv: 1911.07795 | DOI | MR | Zbl
[31] Eynard B., Garcia-Failde E., Marchal O., Orantin N., Quantization of classical spectral curves via topological recursion, arXiv: 2106.04339
[32] Eynard B., Orantin N., “Invariants of algebraic curves and topological expansion”, Commun. Number Theory Phys., 1 (2007), 347–452, arXiv: math-ph/0702045 | DOI | MR | Zbl
[33] Eynard B., Orantin N., Mariño M., “Holomorphic anomaly and matrix models”, J. High Energy Phys., 2007:6 (2007), 058, 20 pp., arXiv: hep-th/0702110 | DOI | MR
[34] Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents, Math. Surveys Monogr., 128, American Mathematical Society, Providence, RI, 2006 | DOI | MR
[35] Gaiotto D., Moore G.W., Neitzke A., “Spectral networks”, Ann. Henri Poincaré, 14 (2013), 1643–1731, arXiv: 1204.4824 | DOI | MR | Zbl
[36] Gaiotto D., Moore G.W., Neitzke A., “Wall-crossing, Hitchin systems, and the WKB approximation”, Adv. Math., 234 (2013), 239–403, arXiv: 0907.3987 | DOI | MR | Zbl
[37] Gamayun O., Iorgov N., Lisovyy O., “Conformal field theory of Painlevé VI”, J. High Energy Phys., 2012:10 (2012), 038, 24 pp., arXiv: 1207.0787 | DOI | MR
[38] Ghoshal D., Vafa C., “$c=1$ string as the topological theory of the conifold”, Nuclear Phys. B, 453 (1995), 121–128, arXiv: hep-th/9506122 | DOI | MR | Zbl
[39] Grassi A., Gu J., “BPS relations from spectral problems and blowup equations”, Lett. Math. Phys., 109 (2019), 1271–1302, arXiv: 1609.05914 | DOI | MR | Zbl
[40] Gu J., Relations between Stokes constants of unrefined and Nekrasov–Shatashvili topological strings, arXiv: 2307.02079
[41] Gu J., Kashani-Poor A.-K., Klemm A., Mariño M., “Non-perturbative topological string theory on compact Calabi–Yau 3-folds”, SciPost Phys., 16 (2024), 079, 84 pp., arXiv: 2305.19916 | DOI | MR
[42] Gu J., Mariño M., “Exact multi-instantons in topological string theory”, SciPost Phys., 15 (2023), 179, 36 pp., arXiv: 2211.01403 | DOI | MR
[43] Gu J., Mariño M., “On the resurgent structure of quantum periods”, SciPost Phys., 15 (2023), 035, 40 pp., arXiv: 2211.03871 | DOI | MR
[44] Huang M., Klemm A., “Holomorphic anomaly in gauge theories and matrix models”, J. High Energy Phys., 2007:9 (2007), 054, 33 pp., arXiv: hep-th/0605195 | DOI | MR
[45] Iwaki K., “2-parameter $\tau$-function for the first Painlevé equation: topological recursion and direct monodromy problem via exact WKB analysis”, Comm. Math. Phys., 377 (2020), 1047–1098, arXiv: 1902.06439 | DOI | MR | Zbl
[46] Iwaki K., Kidwai O., “Topological recursion and uncoupled BPS structures I: BPS spectrum and free energies”, Adv. Math., 398 (2022), 108191, 54 pp., arXiv: 2010.05596 | DOI | MR | Zbl
[47] Iwaki K., Kidwai O., “Topological recursion and uncoupled BPS structures II: Voros symbols and the $\tau $-function”, Comm. Math. Phys., 399 (2023), 519–572, arXiv: 2108.06995 | DOI | MR | Zbl
[48] Iwaki K., Nakanishi T., “Exact WKB analysis and cluster algebras”, J. Phys. A, 47 (2014), 474009, 98 pp., arXiv: 1401.7094 | DOI | MR | Zbl
[49] Iwaki K., Nakanishi T., “Exact WKB analysis and cluster algebras II: Simple poles, orbifold points, and generalized cluster algebras”, Int. Math. Res. Not., 2016 (2016), 4375–4417, arXiv: 1409.4641 | DOI | MR | Zbl
[50] Jeong S., Nekrasov N., “Riemann–Hilbert correspondence and blown up surface defects”, J. High Energy Phys., 2020:12 (2020), 006, 81 pp., arXiv: 2007.03660 | DOI | MR
[51] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[52] Kapaev A.A., “Asymptotic behavior of the solutions of the Painlevé equation of the first kind”, Differ. Equ., 24, 1988, 1107–1115 | MR | Zbl
[53] Kapaev A.A., “Quasi-linear stokes phenomenon for the Painlevé first equation”, J. Phys. A, 37 (2004), 11149–11167, arXiv: nlin.SI/0404026 | DOI | MR | Zbl
[54] Kawai T., Takei Y., Algebraic analysis of singular perturbation theory, Transl. Math. Monogr., 227, American Mathematical Society, Providence, RI, 2005 | DOI | MR | Zbl
[55] Lisovyy O., Roussillon J., “On the connection problem for Painlevé I”, J. Phys. A, 50 (2017), 255202, 15 pp., arXiv: 1612.08382 | DOI | MR | Zbl
[56] Marchal O., Orantin N., “Quantization of hyper-elliptic curves from isomonodromic systems and topological recursion”, J. Geom. Phys., 171 (2022), 104407, 44 pp., arXiv: 1911.07739 | DOI | MR | Zbl
[57] Mariño M., Schwick M., Non-perturbative real topological strings, arXiv: 2309.12046
[58] Mitschi C., Sauzin D., Divergent series, summability and resurgence, v. I, Lecture Notes in Math., 2153, Springer, 2016 | DOI | MR | Zbl
[59] Nemes G., “On the Borel summability of WKB solutions of certain Schrödinger-type differential equations”, J. Approx. Theory, 265 (2021), 105562, 30 pp., arXiv: 2004.13367 | DOI | MR | Zbl
[60] Nikolaev N., “Existence and uniqueness of exact WKB solutions for second-order singularly perturbed linear ODEs”, Comm. Math. Phys., 400 (2023), 463–517, arXiv: 2106.10248 | DOI | MR | Zbl
[61] Pasquetti S., Schiappa R., “Borel and Stokes nonperturbative phenomena in topological string theory and $c=1$ matrix models”, Ann. Henri Poincaré, 11 (2010), 351–431, arXiv: 0907.4082 | DOI | MR | Zbl
[62] Silverstone H.J., “JWKB connection-formula problem revisited via Borel summation”, Phys. Rev. Lett., 55 (1985), 2523–2526 | DOI | MR
[63] Strebel K., Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer, Berlin, 1984 | DOI | MR | Zbl
[64] Takei Y., “On the connection formula for the first Painlevé equation—from the viewpoint of the exact WKB analysis”, Sūrikaisekikenkyūsho Kōkyūroku, 931, 1995, 70–99 | MR
[65] Takei Y., “An explicit description of the connection formula for the first Painlevé equation”, Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear, Kyoto University Press, Kyoto, 2000 | MR
[66] van der Put M., Saito M.-H., “Moduli spaces for linear differential equations and the Painlevé equations”, Ann. Inst. Fourier (Grenoble), 59 (2009), 2611–2667, arXiv: 0902.1702 | DOI | MR | Zbl
[67] van Spaendonck A., Vonk M., “Painlevé I and exact WKB: Stokes phenomenon for two-parameter transseries”, J. Phys. A, 55 (2022), 454003, 64 pp., arXiv: 2204.09062 | DOI | MR | Zbl
[68] Voros A., “The return of the quartic oscillator: the complex WKB method”, Ann. Inst. H. Poincaré Sect. A (N.S.), 39 (1983), 211–338 | MR | Zbl