Compatible $E$-Differential Forms on Lie Algebroids over (Pre-)Multisymplectic Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider higher generalizations of both a (twisted) Poisson structure and the equivariant condition of a momentum map on a symplectic manifold. On a Lie algebroid over a (pre-)symplectic and (pre-)multisymplectic manifold, we introduce a Lie algebroid differential form called a compatible $E$-$n$-form. This differential form satisfies a compatibility condition, which is consistent with both the Lie algebroid structure and the (pre-)(multi)symplectic structure. There are many interesting examples such as a Poisson structure, a twisted Poisson structure and a twisted $R$-Poisson structure for a pre-$n$-plectic manifold. Moreover, momentum maps and momentum sections on symplectic manifolds, homotopy momentum maps and homotopy momentum sections on multisymplectic manifolds have this structure.
Keywords: Poisson geometry, multisymplectic geometry, higher structures.
Mots-clés : Lie algebroid
@article{SIGMA_2024_20_a24,
     author = {Noriaki Ikeda},
     title = {Compatible $E${-Differential} {Forms} on {Lie} {Algebroids} over {(Pre-)Multisymplectic} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a24/}
}
TY  - JOUR
AU  - Noriaki Ikeda
TI  - Compatible $E$-Differential Forms on Lie Algebroids over (Pre-)Multisymplectic Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a24/
LA  - en
ID  - SIGMA_2024_20_a24
ER  - 
%0 Journal Article
%A Noriaki Ikeda
%T Compatible $E$-Differential Forms on Lie Algebroids over (Pre-)Multisymplectic Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a24/
%G en
%F SIGMA_2024_20_a24
Noriaki Ikeda. Compatible $E$-Differential Forms on Lie Algebroids over (Pre-)Multisymplectic Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a24/

[1] Abad C.A., Crainic M., “Representations up to homotopy of Lie algebroids”, J. Reine Angew. Math., 663 (2012), 91–126, arXiv: 0901.0319 | DOI | MR | Zbl

[2] Alexandrov M., Schwarz A., Zaboronsky O., Kontsevich M., “The geometry of the master equation and topological quantum field theory”, Internat. J. Modern Phys. A, 12 (1997), 1405–1429, arXiv: hep-th/9502010 | DOI | MR | Zbl

[3] Bessho T., Heller M.A., Ikeda N., Watamura S., “Topological membranes, current algebras and H-flux–R-flux duality based on Courant algebroids”, J. High Energy Phys., 2016:4 (2016), 170, 40 pp., arXiv: 1511.03425 | DOI | MR | Zbl

[4] Bi Y., Sheng Y., “On higher analogues of Courant algebroids”, Sci. China Math., 54 (2011), 437–447, arXiv: 1003.1350 | DOI | MR | Zbl

[5] Blohmann C., Fernandes M.C.B., Weinstein A., “Groupoid symmetry and constraints in general relativity”, Commun. Contemp. Math., 15 (2013), 1250061, 25 pp., arXiv: 1003.2857 | DOI | MR | Zbl

[6] Blohmann C., Weinstein A., Hamiltonian Lie algebroids, arXiv: 1811.11109

[7] Bonavolontà G., Poncin N., “On the category of Lie $n$-algebroids”, J. Geom. Phys., 73 (2013), 70–90, arXiv: 1207.3590 | DOI | MR | Zbl

[8] Bursztyn H., Martinez Alba N., Rubio R., “On higher Dirac structures”, Int. Math. Res. Not., 2019 (2019), 1503–1542, arXiv: 1611.02292 | DOI | MR | Zbl

[9] Bursztyn H., Radko O., “Gauge equivalence of Dirac structures and symplectic groupoids”, Ann. Inst. Fourier (Grenoble), 53 (2003), 309–337, arXiv: math.SG/0202099 | DOI | MR | Zbl

[10] Callies M., Frégier Y., Rogers C.L., Zambon M., “Homotopy moment maps”, Adv. Math., 303 (2016), 954–1043, arXiv: 1304.2051 | DOI | MR | Zbl

[11] Cariñena J.F., Crampin M., Ibort L.A., “On the multisymplectic formalism for first order field theories”, Differential Geom. Appl., 1 (1991), 345–374 | DOI | MR | Zbl

[12] Cattaneo A.S., Schätz F., “Introduction to supergeometry”, Rev. Math. Phys., 23 (2011), 669–690, arXiv: 1011.3401 | DOI | MR

[13] Chatzistavrakidis A., “Topological field theories induced by twisted R-Poisson structure in any dimension”, J. High Energy Phys., 2021:9 (2021), 045, 37 pp., arXiv: 2106.01067 | DOI | MR

[14] Chatzistavrakidis A., “Twisted R-Poisson sigma models”, Proc. Sci., 406 (2022), PoS(CORFU2021)271, 20 pp., arXiv: 2207.03245 | DOI

[15] Crainic M., Fernandes R.L., “Lectures on integrability of Lie brackets”, Lectures on Poisson geometry, Geom. Topol. Monogr., 17, Geometry Topology Publications, Coventry, 2011, 1–107, arXiv: math.DG/0611259 | DOI | MR | Zbl

[16] Cueca M., “The geometry of graded cotangent bundles”, J. Geom. Phys., 161 (2021), 104055, 20 pp., arXiv: 1905.13245 | DOI | MR | Zbl

[17] Cueca M., Schnitzer J., Deformations of Lagrangian $Q$-submanifolds, arXiv: 2309.05580

[18] Dufour J.-P., Zung N.T., Poisson structures and their normal forms, Prog. Math., 242, Birkhäuser, Basel, 2005 | DOI | MR | Zbl

[19] Gotay M.J., Isenberg J., Marsden J.E., Montgomery R., Momentum maps and classical relativistic fields. Part I: Covariant field theory, arXiv: physics/9801019

[20] Grützmann M., Strobl T., “General Yang–Mills type gauge theories for $p$-form gauge fields: from physics-based ideas to a mathematical framework or from Bianchi identities to twisted Courant algebroids”, Int. J. Geom. Methods Mod. Phys., 12 (2015), 1550009, 80 pp., arXiv: 1407.6759 | DOI | MR | Zbl

[21] Hagiwara Y., “Nambu–Dirac manifolds”, J. Phys. A, 35 (2002), 1263–1281 | DOI | MR | Zbl

[22] Hirota Y., Ikeda N., “Homotopy momentum sections on multisymplectic manifolds”, J. Geom. Phys., 182 (2022), 104667, 16 pp., arXiv: 2110.12305 | DOI | MR | Zbl

[23] Ikeda N., “Lectures on AKSZ sigma models for physicists”, Noncommutative Geometry and Physics. 4, World Scientific Publishing, Hackensack, NJ, 2017, 79–169, arXiv: 1204.3714 | DOI | MR | Zbl

[24] Ikeda N., “Momentum sections in Hamiltonian mechanics and sigma models”, SIGMA, 15 (2019), 076, 16 pp., arXiv: 1905.02434 | DOI | MR | Zbl

[25] Ikeda N., “Higher dimensional Lie algebroid sigma model with WZ term”, Universe, 7 (2021), 391, 18 pp., arXiv: 2109.02858 | DOI

[26] Ikeda N., “Momentum section on Courant algebroid and constrained Hamiltonian mechanics”, J. Geom. Phys., 170 (2021), 104350, 20 pp., arXiv: 2021.10435 | DOI | MR | Zbl

[27] Ikeda N., Strobl T., “BV and BFV for the $H$-twisted Poisson sigma model”, Ann. Henri Poincaré, 22 (2021), 1267–1316, arXiv: 1912.13511 | DOI | MR

[28] Ikeda N., Xu X., Current algebras from DG symplectic pairs in supergeometry, arXiv: 1308.0100

[29] Ikeda N., Xu X., “Canonical functions, differential graded symplectic pairs in supergeometry, and Alexandrov–Kontsevich–Schwartz–Zaboronsky sigma models with boundaries”, J. Math. Phys., 55 (2014), 113505, 21 pp., arXiv: 1301.4805 | DOI | MR | Zbl

[30] Klimčík C., Strobl T., “WZW-Poisson manifolds”, J. Geom. Phys., 43 (2002), 341–344, arXiv: math.SG/0104189 | DOI | MR | Zbl

[31] Kosmann-Schwarzbach Y., “Poisson and symplectic functions in Lie algebroid theory”, Higher Structures in Geometry and Physics, Progr. Math., 287, Birkhäuser, New York, 2011, 243–268, arXiv: 0711.2043 | DOI | MR | Zbl

[32] Kosmann-Schwarzbach Y., Laurent-Gengoux C., “The modular class of a twisted Poisson structure”, Trav. Math., 16, Université du Luxembourg, Luxembourg, 2005, 315–339, arXiv: math.SG/0505663 | MR | Zbl

[33] Kotov A., Strobl T., “Lie algebroids, gauge theories, and compatible geometrical structures”, Rev. Math. Phys., 31 (2019), 1950015, 31 pp., arXiv: 1603.04490 | DOI | MR | Zbl

[34] Mackenzie K., Lie groupoids and Lie algebroids in differential geometry, Lond. Math. Soc. Lect. Note Ser., 124, Cambridge University Press, Cambridge, 1987 | DOI | MR | Zbl

[35] Miti A.M., Zambon M., Observables on multisymplectic manifolds and higher Courant algebroids, arXiv: 2209.05836

[36] Park J.-S., “Topological open $p$-branes”, Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific Publishing, River Edge, NJ, 2001, 311–384, arXiv: hep-th/0012141 | DOI | MR | Zbl

[37] Roytenberg D., “Quasi-Lie bialgebroids and twisted Poisson manifolds”, Lett. Math. Phys., 61 (2002), 123–137, arXiv: math.QA/0112152 | DOI | MR | Zbl

[38] Roytenberg D., “AKSZ-BV formalism and Courant algebroid-induced topological field theories”, Lett. Math. Phys., 79 (2007), 143–159, arXiv: hep-th/0608150 | DOI | MR | Zbl

[39] Ševera P., “Some title containing the words “homotopy” and “symplectic”, e.g. this one”, Trav. Math., 16, Université du Luxembourg, Luxembourg, 2005, 121–137, arXiv: math.SG/0105080 | MR

[40] Ševera P., Weinstein A., “Poisson geometry with a 3-form background”, Progr. Theoret. Phys. Suppl., 144 (2001), 145–154, arXiv: math.SG/0107133 | DOI | MR

[41] Sheng Y., Zhu C., “Higher extensions of Lie algebroids”, Commun. Contemp. Math., 19 (2017), 1650034, 41 pp., arXiv: 1103.5920 | DOI | MR | Zbl

[42] Terashima Y., “On Poisson functions”, J. Symplectic Geom., 6 (2008), 1–7 | DOI | MR | Zbl

[43] Vaintrob A.Yu., “Lie algebroids and homological vector fields”, Russian Math. Surveys, 52 (1997), 428–429 | DOI | MR | Zbl

[44] Vysoký J., “Global theory of graded manifolds”, Rev. Math. Phys., 34 (2022), 2250035, 197 pp., arXiv: 2105.02534 | DOI | MR | Zbl

[45] Zambon M., “$L_\infty$-algebras and higher analogues of Dirac structures and Courant algebroids”, J. Symplectic Geom., 10 (2012), 563–599, arXiv: 1003.1004 | DOI | MR | Zbl