@article{SIGMA_2024_20_a22,
author = {Adri B. Olde Daalhuis},
title = {Lerch $\Phi$ {Asymptotics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a22/}
}
Adri B. Olde Daalhuis. Lerch $\Phi$ Asymptotics. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a22/
[1] Bennett T., Howls C.J., Nemes G., Olde Daalhuis A.B., “Globally exact asymptotics for integrals with arbitrary order saddles”, SIAM J. Math. Anal., 50 (2018), 2144–2177, arXiv: . 1710.10073 | DOI | MR | Zbl
[2] Cai X.S., López J.L., “A note on the asymptotic expansion of the Lerch's transcendent”, Integral Transforms Spec. Funct., 30 (2019), 844–855, arXiv: 1806.01122 | DOI | MR | Zbl
[3] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. I, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1981 | MR
[4] Ferreira C., López J.L., “Asymptotic expansions of the Hurwitz–Lerch zeta function”, J. Math. Anal. Appl., 298 (2004), 210–224 | DOI | MR | Zbl
[5] Navas L.M., Ruiz F.J., Varona J.L., “Asymptotic behavior of the Lerch transcendent function”, J. Approx. Theory, 170 (2013), 21–31 | DOI | MR | Zbl
[6] Nemes G., “Error bounds for the asymptotic expansion of the Hurwitz zeta function”, Proc. A., 473 (2017), 20170363, 16 pp., arXiv: 1702.05316 | DOI | MR | Zbl
[7] Nicholson M.D., Cheek D., Antal T., “Sequential mutations in exponentially growing populations”, PLOS Comput. Biol., 19 (2023), e1011289, 32 pp., arXiv: 2208.02088 | DOI
[8] Olde Daalhuis A.B., “Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 1–29 | DOI | MR | Zbl
[9] Olver F.W.J., Asymptotics and special functions, AKP Class, A K Peters, Ltd., Wellesley, MA, 1997 | DOI | MR | Zbl
[10] Olver F.W.J., Olde Daalhuis A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V., Cohl H.S., McClain M.A., NIST digital library of mathematical functions, Release 1.1.12 of 2023-12-15 https://dlmf.nist.gov/
[11] Paris R.B., “The Stokes phenomenon and the Lerch zeta function”, Math. Aeterna, 6 (2016), 165–179, arXiv: 1602.00099 | MR
[12] Paris R.B., Kaminski D., Asymptotics and Mellin–Barnes integrals, Encyclopedia Math. Appl., 85, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl
[13] Srivastava H.M., Saxena R.K., Pogány T.K., Saxena R., “Integral and computational representations of the extended Hurwitz–Lerch zeta function”, Integral Transforms Spec. Funct., 22 (2011), 487–506 | DOI | MR | Zbl