Lerch $\Phi$ Asymptotics
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a Mellin–Barnes integral representation for the Lerch transcendent $\Phi(z,s,a)$ to obtain large $z$ asymptotic approximations. The simplest divergent asymptotic approximation terminates in the case that $s$ is an integer. For non-integer $s$ the asymptotic approximations consists of the sum of two series. The first one is in powers of $(\ln z)^{-1}$ and the second one is in powers of $z^{-1}$. Although the second series converges, it is completely hidden in the divergent tail of the first series. We use resummation and optimal truncation to make the second series visible.
Keywords: Hurwitz–Lerch zeta function, analytic continuation, asymptotic expansions.
@article{SIGMA_2024_20_a22,
     author = {Adri B. Olde Daalhuis},
     title = {Lerch $\Phi$ {Asymptotics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a22/}
}
TY  - JOUR
AU  - Adri B. Olde Daalhuis
TI  - Lerch $\Phi$ Asymptotics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a22/
LA  - en
ID  - SIGMA_2024_20_a22
ER  - 
%0 Journal Article
%A Adri B. Olde Daalhuis
%T Lerch $\Phi$ Asymptotics
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a22/
%G en
%F SIGMA_2024_20_a22
Adri B. Olde Daalhuis. Lerch $\Phi$ Asymptotics. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a22/

[1] Bennett T., Howls C.J., Nemes G., Olde Daalhuis A.B., “Globally exact asymptotics for integrals with arbitrary order saddles”, SIAM J. Math. Anal., 50 (2018), 2144–2177, arXiv: . 1710.10073 | DOI | MR | Zbl

[2] Cai X.S., López J.L., “A note on the asymptotic expansion of the Lerch's transcendent”, Integral Transforms Spec. Funct., 30 (2019), 844–855, arXiv: 1806.01122 | DOI | MR | Zbl

[3] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. I, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1981 | MR

[4] Ferreira C., López J.L., “Asymptotic expansions of the Hurwitz–Lerch zeta function”, J. Math. Anal. Appl., 298 (2004), 210–224 | DOI | MR | Zbl

[5] Navas L.M., Ruiz F.J., Varona J.L., “Asymptotic behavior of the Lerch transcendent function”, J. Approx. Theory, 170 (2013), 21–31 | DOI | MR | Zbl

[6] Nemes G., “Error bounds for the asymptotic expansion of the Hurwitz zeta function”, Proc. A., 473 (2017), 20170363, 16 pp., arXiv: 1702.05316 | DOI | MR | Zbl

[7] Nicholson M.D., Cheek D., Antal T., “Sequential mutations in exponentially growing populations”, PLOS Comput. Biol., 19 (2023), e1011289, 32 pp., arXiv: 2208.02088 | DOI

[8] Olde Daalhuis A.B., “Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 1–29 | DOI | MR | Zbl

[9] Olver F.W.J., Asymptotics and special functions, AKP Class, A K Peters, Ltd., Wellesley, MA, 1997 | DOI | MR | Zbl

[10] Olver F.W.J., Olde Daalhuis A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V., Cohl H.S., McClain M.A., NIST digital library of mathematical functions, Release 1.1.12 of 2023-12-15 https://dlmf.nist.gov/

[11] Paris R.B., “The Stokes phenomenon and the Lerch zeta function”, Math. Aeterna, 6 (2016), 165–179, arXiv: 1602.00099 | MR

[12] Paris R.B., Kaminski D., Asymptotics and Mellin–Barnes integrals, Encyclopedia Math. Appl., 85, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl

[13] Srivastava H.M., Saxena R.K., Pogány T.K., Saxena R., “Integral and computational representations of the extended Hurwitz–Lerch zeta function”, Integral Transforms Spec. Funct., 22 (2011), 487–506 | DOI | MR | Zbl