@article{SIGMA_2024_20_a21,
author = {Alberto Richtsfeld},
title = {Boundary {Value} {Problems} for {Dirac} {Operators} on {Graphs}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a21/}
}
Alberto Richtsfeld. Boundary Value Problems for Dirac Operators on Graphs. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a21/
[1] Atiyah M.F., Patodi V.K., Singer I.M., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl
[2] Bär C., Ballmann W., “Boundary value problems for elliptic differential operators of first order”, Surv. Differ. Geom., 17, International Press, Boston, MA, 2012, 1–78, arXiv: 1101.1196 | DOI | MR | Zbl
[3] Bär C., Ballmann W., “Guide to elliptic boundary value problems for Dirac-type operators”, Arbeitstagung Bonn 2013, Progr. Math., 319, Birkhäuser, Cham, 2016, 43–80, arXiv: 1307.3021 | DOI | MR | Zbl
[4] Bär C., Bandara L., “Boundary value problems for general first-order elliptic differential operators”, J. Funct. Anal., 282 (2022), 109445, 69 pp., arXiv: 1906.08581 | DOI | MR | Zbl
[5] Berkolaiko G., Kuchment P., Introduction to quantum graphs, Math. Surv. Monogr., 186, American Mathematical Society, Providence, RI, 2013 | DOI | MR | Zbl
[6] Bolte J., Harrison J., “Spectral statistics for the Dirac operator on graphs”, J. Phys. A, 36 (2003), 2747–2769, arXiv: nlin.CD/0210029 | DOI | MR | Zbl
[7] Bulla W., Trenkler T., “The free Dirac operator on compact and noncompact graphs”, J. Math. Phys., 31 (1990), 1157–1163 | DOI | MR | Zbl
[8] Cvetković D.M., Doob M., Sachs H., Spectra of graphs. Theory and application, VEB Deutscher Verlag der Wissenschaften, Berlin, 1982 | MR
[9] Exner P., Šeba P., “Free quantum motion on a branching graph”, Rep. Math. Phys., 28 (1989), 7–26 | DOI | MR | Zbl
[10] Fulling S.A., Kuchment P., Wilson J.H., “Index theorems for quantum graphs”, J. Phys. A, 40 (2007), 14165–14180, arXiv: 0708.3456 | DOI | MR | Zbl
[11] Harmer M., “Hermitian symplectic geometry and extension theory”, J. Phys. A, 33 (2000), 9193–9203, arXiv: math-ph/0703027 | DOI | MR | Zbl
[12] Harrison J.M., “Quantum graphs with spin Hamiltonians”, Analysis on graphs and its applications, Proc. Sympos. Pure Math., 77, American Mathematical Society, Providence, RI, 2008, 261–277, arXiv: 0712.0869 | DOI | MR | Zbl
[13] Kostrykin V., Schrader R., “Kirchhoff's rule for quantum wires”, J. Phys. A, 32 (1999), 595–630, arXiv: math-ph/9806013 | DOI | MR | Zbl
[14] Kuchment P., “Quantum graphs: I Some basic structures”, Waves Random Media, 14 (2004), S107–S128 | DOI | MR | Zbl
[15] Kuchment P., “Quantum graphs: an introduction and a brief survey”, Analysis on Graphs and its Applications, Proc. Sympos. Pure Math., 77, American Mathematical Society, Providence, RI, 2008, 291–312, arXiv: 0802.3442 | DOI | MR | Zbl
[16] Post O., “First order approach and index theorems for discrete and metric graphs”, Ann. Henri Poincaré, 10 (2009), 823–866, arXiv: 0708.3707 | DOI | MR | Zbl
[17] Rigo M., Advanced graph theory and combinatorics, Comput. Eng. Ser., ISTE, London, 2016 | DOI | MR | Zbl
[18] von Below J., “A characteristic equation associated to an eigenvalue problem on $c^2$-networks”, Linear Algebra Appl., 71 (1985), 309–325 | DOI | MR | Zbl