Mots-clés : Lamé's equation, Hill's discriminant
@article{SIGMA_2024_20_a20,
author = {Hans Volkmer},
title = {On the {Hill} {Discriminant} of {Lam\'e's} {Differential} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a20/}
}
Hans Volkmer. On the Hill Discriminant of Lamé's Differential Equation. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a20/
[1] Arscott F.M., Periodic differential equations. An introduction to Mathieu, Lamé, and allied functions, Internat. Ser. Monogr. Pure Appl. Math., 66, The Macmillan Company, New York, 1964 | MR
[2] Coddington E.A., Carlson R., Linear ordinary differential equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997 | DOI | MR | Zbl
[3] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. III, McGraw-Hill Book Co., New York, 1955 | MR | Zbl
[4] Kim K.Y., Levi M., Zhou J., “Spectral asymptotics and Lamé spectrum for coupled particles in periodic potentials”, J. Dynam. Differential Equations, 35 (2023), 3545–3561, arXiv: 2105.07577 | DOI | MR
[5] Magnus W., Winkler S., Hill's equation, Intersci. Tracts Pure Appl. Math., 20, Interscience Publishers John Wiley Sons, New York, 1966 | MR
[6] Olver F.W.J., Asymptotics and special functions, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997 | MR | Zbl
[7] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[8] Volkmer H., “Four remarks on eigenvalues of Lamé's equation”, Anal. Appl. (Singap.), 2 (2004), 161–175 | DOI | MR | Zbl
[9] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl