On the Hill Discriminant of Lamé's Differential Equation
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lamé's differential equation is a linear differential equation of the second order with a periodic coefficient involving the Jacobian elliptic function $\mathrm{sn}$ depending on the modulus $k$, and two additional parameters $h$ and $\nu$. This differential equation appears in several applications, for example, the motion of coupled particles in a periodic potential. Stability and existence of periodic solutions of Lamé's equations is determined by the value of its Hill discriminant $D(h,\nu,k)$. The Hill discriminant is compared to an explicitly known quantity including explicit error bounds. This result is derived from the observation that Lamé's equation with $k=1$ can be solved by hypergeometric functions because then the elliptic function $\mathrm{sn}$ reduces to the hyperbolic tangent function. A connection relation between hypergeometric functions then allows the approximation of the Hill discriminant by a simple expression. In particular, one obtains an asymptotic approximation of $D(h,\nu,k)$ when the modulus $k$ tends to $1$.
Keywords: asymptotic expansion, stability.
Mots-clés : Lamé's equation, Hill's discriminant
@article{SIGMA_2024_20_a20,
     author = {Hans Volkmer},
     title = {On the {Hill} {Discriminant} of {Lam\'e's} {Differential} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a20/}
}
TY  - JOUR
AU  - Hans Volkmer
TI  - On the Hill Discriminant of Lamé's Differential Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a20/
LA  - en
ID  - SIGMA_2024_20_a20
ER  - 
%0 Journal Article
%A Hans Volkmer
%T On the Hill Discriminant of Lamé's Differential Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a20/
%G en
%F SIGMA_2024_20_a20
Hans Volkmer. On the Hill Discriminant of Lamé's Differential Equation. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a20/

[1] Arscott F.M., Periodic differential equations. An introduction to Mathieu, Lamé, and allied functions, Internat. Ser. Monogr. Pure Appl. Math., 66, The Macmillan Company, New York, 1964 | MR

[2] Coddington E.A., Carlson R., Linear ordinary differential equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997 | DOI | MR | Zbl

[3] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. III, McGraw-Hill Book Co., New York, 1955 | MR | Zbl

[4] Kim K.Y., Levi M., Zhou J., “Spectral asymptotics and Lamé spectrum for coupled particles in periodic potentials”, J. Dynam. Differential Equations, 35 (2023), 3545–3561, arXiv: 2105.07577 | DOI | MR

[5] Magnus W., Winkler S., Hill's equation, Intersci. Tracts Pure Appl. Math., 20, Interscience Publishers John Wiley Sons, New York, 1966 | MR

[6] Olver F.W.J., Asymptotics and special functions, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997 | MR | Zbl

[7] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[8] Volkmer H., “Four remarks on eigenvalues of Lamé's equation”, Anal. Appl. (Singap.), 2 (2004), 161–175 | DOI | MR | Zbl

[9] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl