Mots-clés : optimal transport.
@article{SIGMA_2024_20_a2,
author = {Eva Kopfer and Jeffrey Streets},
title = {Optimal {Transport} and {Generalized} {Ricci} {Flow}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a2/}
}
Eva Kopfer; Jeffrey Streets. Optimal Transport and Generalized Ricci Flow. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a2/
[1] Alekseev A., Xu P., Derived brackets and Courant algebroids, in preparation
[2] Bakry D., Émery M., “Diffusions hypercontractives”, Séminaire de Probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR
[3] Feldman M., Ilmanen T., Ni L., “Entropy and reduced distance for Ricci expanders”, J. Geom. Anal., 15 (2005), 49–62, arXiv: math.DG/0405036 | DOI | MR | Zbl
[4] Fu X., Naber A., Streets J., “Codimension four regularity of generalized Einstein structures”, Math. Ann., 387 (2023), 2001–2059, arXiv: 2107.08108 | DOI | MR
[5] Garcia-Fernandez M., “Ricci flow, Killing spinors, and T-duality in generalized geometry”, Adv. Math., 350 (2019), 1059–1108, arXiv: 1611.08926 | DOI | MR | Zbl
[6] Garcia-Fernandez M., Jordan J., Streets J., “Non–Kähler Calabi–Yau geometry and pluriclosed flow”, J. Math. Pures Appl., 177 (2023), 329–367, arXiv: 2106.13716 | DOI | MR
[7] Garcia-Fernandez M., Streets J., Generalized Ricci flow, Univ. Lecture Ser., 76, American Mathematical Society, Providence, RI, 2021, arXiv: 2008.07004 | DOI | MR | Zbl
[8] Gualtieri M., “Generalized Kähler geometry”, Comm. Math. Phys., 331 (2014), 297–331, arXiv: 1007.3485 | DOI | MR | Zbl
[9] He C.-L., Hu S., Kong D.-X., Liu K., “Generalized Ricci flow. I Local existence and uniqueness”, Topology and Physics, Nankai Tracts Math., 12, World Scientific Publishing, Hackensack, NJ, 2008, 151–171, arXiv: 1107.3270 | DOI | MR | Zbl
[10] Hitchin N., “Generalized Calabi–Yau manifolds”, Q. J. Math., 54 (2003), 281–308, arXiv: math.DG/0209099 | DOI | MR | Zbl
[11] Lott J., “Optimal transport and Perelman's reduced volume”, Calc. Var. Partial Differential Equations, 36 (2009), 49–84, arXiv: 0804.0343 | DOI | MR | Zbl
[12] McCann R.J., Topping P.M., “Ricci flow, entropy and optimal transportation”, Amer. J. Math., 132 (2010), 711–730 | DOI | MR | Zbl
[13] Oliynyk T., Suneeta V., Woolgar E., “A gradient flow for worldsheet nonlinear sigma models”, Nuclear Phys. B, 739 (2006), 441–458, arXiv: hep-th/0510239 | DOI | MR | Zbl
[14] Otto F., Westdickenberg M., “Eulerian calculus for the contraction in the Wasserstein distance”, SIAM J. Math. Anal., 37 (2005), 1227–1255 | DOI | MR
[15] Perelman G., The entropy formula for the {R}icci flow and its geometric applications, arXiv: math.DG/0211159
[16] Polchinski J., String theory, v. I, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2005 | MR
[17] Streets J., “Pluriclosed flow, Born–Infeld geometry, and rigidity results for generalized Kähler manifolds”, Comm. Partial Differential Equations, 41 (2016), 318–374, arXiv: 1502.02584 | DOI | MR | Zbl
[18] Streets J., “Generalized geometry, $T$-duality, and renormalization group flow”, J. Geom. Phys., 114 (2017), 506–522, arXiv: 1310.5121 | DOI | MR | Zbl
[19] Streets J., “Scalar curvature, entropy, and generalized Ricci flow”, Int. Math. Res. Not., 2023 (2023), 9481–9510, arXiv: 2207.13197 | DOI | MR | Zbl
[20] Streets J., Tian G., “A parabolic flow of pluriclosed metrics”, Int. Math. Res. Not., 2010 (2010), 3101–3133, arXiv: 0903.4418 | DOI | MR | Zbl
[21] Streets J., Tian G., “Generalized Kähler geometry and the pluriclosed flow”, Nuclear Phys. B, 858 (2012), 366–376, arXiv: 1109.0503 | DOI | MR | Zbl
[22] Topping P., “$\mathcal L$-optimal transportation for Ricci flow”, J. Reine Angew. Math., 636 (2009), 93–122 | DOI | MR | Zbl