Optimal Transport and Generalized Ricci Flow
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove results relating the theory of optimal transport and generalized Ricci flow. We define an adapted cost functional for measures using a solution of the associated dilaton flow. This determines a formal notion of geodesics in the space of measures, and we show geodesic convexity of an associated entropy functional. Finally, we show monotonicity of the cost along the backwards heat flow, and use this to give a new proof of the monotonicity of the energy functional along generalized Ricci flow.
Keywords: generalized Ricci flow
Mots-clés : optimal transport.
@article{SIGMA_2024_20_a2,
     author = {Eva Kopfer and Jeffrey Streets},
     title = {Optimal {Transport} and {Generalized} {Ricci} {Flow}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a2/}
}
TY  - JOUR
AU  - Eva Kopfer
AU  - Jeffrey Streets
TI  - Optimal Transport and Generalized Ricci Flow
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a2/
LA  - en
ID  - SIGMA_2024_20_a2
ER  - 
%0 Journal Article
%A Eva Kopfer
%A Jeffrey Streets
%T Optimal Transport and Generalized Ricci Flow
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a2/
%G en
%F SIGMA_2024_20_a2
Eva Kopfer; Jeffrey Streets. Optimal Transport and Generalized Ricci Flow. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a2/

[1] Alekseev A., Xu P., Derived brackets and Courant algebroids, in preparation

[2] Bakry D., Émery M., “Diffusions hypercontractives”, Séminaire de Probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR

[3] Feldman M., Ilmanen T., Ni L., “Entropy and reduced distance for Ricci expanders”, J. Geom. Anal., 15 (2005), 49–62, arXiv: math.DG/0405036 | DOI | MR | Zbl

[4] Fu X., Naber A., Streets J., “Codimension four regularity of generalized Einstein structures”, Math. Ann., 387 (2023), 2001–2059, arXiv: 2107.08108 | DOI | MR

[5] Garcia-Fernandez M., “Ricci flow, Killing spinors, and T-duality in generalized geometry”, Adv. Math., 350 (2019), 1059–1108, arXiv: 1611.08926 | DOI | MR | Zbl

[6] Garcia-Fernandez M., Jordan J., Streets J., “Non–Kähler Calabi–Yau geometry and pluriclosed flow”, J. Math. Pures Appl., 177 (2023), 329–367, arXiv: 2106.13716 | DOI | MR

[7] Garcia-Fernandez M., Streets J., Generalized Ricci flow, Univ. Lecture Ser., 76, American Mathematical Society, Providence, RI, 2021, arXiv: 2008.07004 | DOI | MR | Zbl

[8] Gualtieri M., “Generalized Kähler geometry”, Comm. Math. Phys., 331 (2014), 297–331, arXiv: 1007.3485 | DOI | MR | Zbl

[9] He C.-L., Hu S., Kong D.-X., Liu K., “Generalized Ricci flow. I Local existence and uniqueness”, Topology and Physics, Nankai Tracts Math., 12, World Scientific Publishing, Hackensack, NJ, 2008, 151–171, arXiv: 1107.3270 | DOI | MR | Zbl

[10] Hitchin N., “Generalized Calabi–Yau manifolds”, Q. J. Math., 54 (2003), 281–308, arXiv: math.DG/0209099 | DOI | MR | Zbl

[11] Lott J., “Optimal transport and Perelman's reduced volume”, Calc. Var. Partial Differential Equations, 36 (2009), 49–84, arXiv: 0804.0343 | DOI | MR | Zbl

[12] McCann R.J., Topping P.M., “Ricci flow, entropy and optimal transportation”, Amer. J. Math., 132 (2010), 711–730 | DOI | MR | Zbl

[13] Oliynyk T., Suneeta V., Woolgar E., “A gradient flow for worldsheet nonlinear sigma models”, Nuclear Phys. B, 739 (2006), 441–458, arXiv: hep-th/0510239 | DOI | MR | Zbl

[14] Otto F., Westdickenberg M., “Eulerian calculus for the contraction in the Wasserstein distance”, SIAM J. Math. Anal., 37 (2005), 1227–1255 | DOI | MR

[15] Perelman G., The entropy formula for the {R}icci flow and its geometric applications, arXiv: math.DG/0211159

[16] Polchinski J., String theory, v. I, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2005 | MR

[17] Streets J., “Pluriclosed flow, Born–Infeld geometry, and rigidity results for generalized Kähler manifolds”, Comm. Partial Differential Equations, 41 (2016), 318–374, arXiv: 1502.02584 | DOI | MR | Zbl

[18] Streets J., “Generalized geometry, $T$-duality, and renormalization group flow”, J. Geom. Phys., 114 (2017), 506–522, arXiv: 1310.5121 | DOI | MR | Zbl

[19] Streets J., “Scalar curvature, entropy, and generalized Ricci flow”, Int. Math. Res. Not., 2023 (2023), 9481–9510, arXiv: 2207.13197 | DOI | MR | Zbl

[20] Streets J., Tian G., “A parabolic flow of pluriclosed metrics”, Int. Math. Res. Not., 2010 (2010), 3101–3133, arXiv: 0903.4418 | DOI | MR | Zbl

[21] Streets J., Tian G., “Generalized Kähler geometry and the pluriclosed flow”, Nuclear Phys. B, 858 (2012), 366–376, arXiv: 1109.0503 | DOI | MR | Zbl

[22] Topping P., “$\mathcal L$-optimal transportation for Ricci flow”, J. Reine Angew. Math., 636 (2009), 93–122 | DOI | MR | Zbl