Mots-clés : Painlevé-III equation
@article{SIGMA_2024_20_a18,
author = {Ahmad Barhoumi and Oleg Lisovyy and Peter D. Miller and Andrei Prokhorov},
title = {Painlev\'e-III {Monodromy} {Maps} {Under} the $D_6\to D_8$ {Confluence} and {Applications} to the {Large-Parameter} {Asymptotics} of {Rational} {Solutions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a18/}
}
TY - JOUR AU - Ahmad Barhoumi AU - Oleg Lisovyy AU - Peter D. Miller AU - Andrei Prokhorov TI - Painlevé-III Monodromy Maps Under the $D_6\to D_8$ Confluence and Applications to the Large-Parameter Asymptotics of Rational Solutions JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a18/ LA - en ID - SIGMA_2024_20_a18 ER -
%0 Journal Article %A Ahmad Barhoumi %A Oleg Lisovyy %A Peter D. Miller %A Andrei Prokhorov %T Painlevé-III Monodromy Maps Under the $D_6\to D_8$ Confluence and Applications to the Large-Parameter Asymptotics of Rational Solutions %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a18/ %G en %F SIGMA_2024_20_a18
Ahmad Barhoumi; Oleg Lisovyy; Peter D. Miller; Andrei Prokhorov. Painlevé-III Monodromy Maps Under the $D_6\to D_8$ Confluence and Applications to the Large-Parameter Asymptotics of Rational Solutions. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a18/
[1] Bilman D., Buckingham R., “Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation”, J. Nonlinear Sci., 29 (2019), 2185–2229, arXiv: 1807.09058 | DOI | MR | Zbl
[2] Bilman D., Ling L., Miller P.D., “Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy”, Duke Math. J., 169 (2020), 671–760, arXiv: 1806.00545 | DOI | MR | Zbl
[3] Bonneux N., Hamaker Z., Stembridge J., Stevens M., “Wronskian Appell polynomials and symmetric functions”, Adv. in Appl. Math., 111 (2019), 101932, 23 pp., arXiv: 2019.10193 | DOI | MR | Zbl
[4] Bothner T., Miller P.D., “Rational solutions of the Painlevé-III equation: large parameter asymptotics”, Constr. Approx., 51 (2020), 123–224, arXiv: 1808.01421 | DOI | MR | Zbl
[5] Bothner T., Miller P.D., Sheng Y., “Rational solutions of the Painlevé-III equation”, Stud. Appl. Math., 141 (2018), 626–679, arXiv: 1801.04360 | DOI | MR | Zbl
[6] Chekhov L.O., Mazzocco M., Rubtsov V.N., “Painlevé monodromy manifolds, decorated character varieties, and cluster algebras”, Int. Math. Res. Not., 2017 (2017), 7639–7691, arXiv: 1511.03851 | DOI | MR | Zbl
[7] Clarkson P., Dunning C., “Rational solutions of the fifth Painlevé equation. Generalized Laguerre polynomials”, Stud. Appl. Math., 152 (2024), 453–507, arXiv: 2304.01579 | DOI | MR
[8] Clarkson P.A., Law C.-K., Lin C.-H., “A constructive proof for the Umemura polynomials of the third Painlevé equation”, SIGMA, 19 (2023), 080, 20 pp., arXiv: 1609.00495 | DOI | MR | Zbl
[9] Fabry E., Sur les intégrales des équations différentielles linéaires à coefficients rationnels, Ph.D. Thesis, Faculté Des Science De Paris, 1885 https://www.sudoc.fr/025014196
[10] Fasondini M., Fornberg B., Weideman J.A.C., “A computational exploration of the McCoy–Tracy–Wu solutions of the third Painlevé equation”, Phys. D, 363 (2018), 18–43 | DOI | MR | Zbl
[11] Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents: the Riemann–Hilbert approach, Math. Surv. Monogr., 128, American Mathematical Society, Providence, RI, 2006 | DOI | MR
[12] Forrester P.J., Witte N.S., “Application of the $\tau$-function theory of Painlevé equations to random matrices: $\rm P_V$, $\rm P_{III}$, the LUE, JUE, and CUE”, Comm. Pure Appl. Math., 55 (2002), 679–727, arXiv: math-ph/0103025 | DOI | MR | Zbl
[13] Garnier R., “Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes”, Ann. Sci. École Norm. Sup. (3), 29 (1912), 1–126 | DOI | MR
[14] Gavrylenko P., Lisovyy O., “Pure ${\rm SU}(2)$ gauge theory partition function and generalized Bessel kernel”, String-Math 2016, Proc. Sympos. Pure Math., 98, American Mathematical Society, Providence, RI, 2018, 181–205, arXiv: 1705.01869 | DOI | MR | Zbl
[15] Gharakhloo R., Witte N.S., “Modulated bi-orthogonal polynomials on the unit circle: the $2j-k$ and $j-2k$ systems”, Constr. Approx., 58 (2023), 1–74, arXiv: 2106.15079 | DOI | MR | Zbl
[16] Glutsuk A.A., “Stokes operators via limit monodromy of generic perturbation”, J. Dynam. Control Systems, 5 (1999), 101–135 | DOI | MR | Zbl
[17] Gromak V.I., “The solutions of Painlevé's third equation”, Differ. Uravn., 9 (1973), 2082–2083 | MR | Zbl
[18] Horrobin C., Stokes' phenomenon arising from the confluence of two simple poles, Ph.D. Thesis, Loughborough University, 2018 https://hdl.handle.net/2134/28357
[19] Ince E.L., Ordinary differential equations, Dover Publications, New York, 1944 | MR | Zbl
[20] Its A.R., Novokshenov V.Yu., The isomonodromic deformation method in the theory of Painlevé equations, Lect. Notes Math., 1191, Springer, Berlin, 1986 | DOI | MR
[21] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects Math., E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR
[22] Jimbo M., “Monodromy problem and the boundary condition for some Painlevé equations”, Publ. Res. Inst. Math. Sci., 18 (1982), 1137–1161 | DOI | MR | Zbl
[23] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[24] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[25] Kajiwara K., Masuda T., “On the Umemura polynomials for the Painlevé III equation”, Phys. Lett. A, 260 (1999), 462–467 | DOI | MR | Zbl
[26] Kapaev A.A., “Scaling limits for the second Painlevé transcendent”, J. Math. Sci., 83 (1997), 38–61 | DOI | MR
[27] Kapaev A.A., Kitaev A.V., “The limit transition ${\rm P}_2\to{\rm P}_1$”, J. Math. Sci., 73 (1995), 460–467 | DOI | MR
[28] Kitaev A.V., “The method of isomonodromic deformations and the asymptotics of the solutions of the “complete” third Painlevé equation”, Sb. Math., 176 (1989), 421–444 | DOI | MR | Zbl
[29] Kitaev A.V., “An isomonodromy cluster of two regular singularities”, J. Phys. A, 39 (2006), 12033–12072, arXiv: math.CA/0606562 | DOI | MR | Zbl
[30] Lax P.D., Functional analysis, Pure Appl. Math., Wiley-Interscience, New York, 2002 | MR | Zbl
[31] Mehta M.L., Random matrices, Pure Appl. Math. (Amsterdam), 142, 3rd ed., Academic Press, Amsterdam, 2004 | MR
[32] Milne A.E., Clarkson P.A., Bassom A.P., “Bäcklund transformations and solution hierarchies for the third Painlevé equation”, Stud. Appl. Math., 98 (1997), 139–194 | DOI | MR | Zbl
[33] Niles D.G., The Riemann–Hilbert–Birkhoff inverse monodromy problem and connection formulae for the third Painlevé transcendents, Ph.D. Thesis, Purdue University, 2009 | MR
[34] Ohyama Y., Okumura S., “A coalescent diagram of the Painlevé equations from the viewpoint of isomonodromic deformations”, J. Phys. A, 39 (2006), 12129–12151 | DOI | MR | Zbl
[35] Okamoto K., “Polynomial Hamiltonians associated with Painlevé equations. II Differential equations satisfied by polynomial Hamiltonians”, Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), 367–371 | DOI | MR | Zbl
[36] Okamoto K., “Isomonodromic deformation and Painlevé equations, and the Garnier system”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33 (1986), 575–618 | MR | Zbl
[37] Okamoto K., “Studies on the Painlevé equations. IV Third Painlevé equation $P_{{\rm III}}$”, Funkcial. Ekvac., 30 (1987), 305–332 | MR | Zbl
[38] Olver W.J., Olde Daalhuis A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V., Cohl H.S., McClain M.A., NIST digital library of mathematical functions, Release 1.1.12 of 2023-12-15 https://dlmf.nist.gov/
[39] Palmer J., “Zeros of the Jimbo, Miwa, Ueno tau function”, J. Math. Phys., 40 (1999), 6638–6681, arXiv: solv-int/9810004 | DOI | MR | Zbl
[40] Suleimanov B.I., “Effect of a small dispersion on self-focusing in a spatially one-dimensional case”, JETP Lett., 106 (2017), 400–405 | DOI
[41] Tracy C.A., Widom H., “Level spacing distributions and the Bessel kernel”, Comm. Math. Phys., 161 (1994), 289–309, arXiv: hep-th/9304063 | DOI | MR | Zbl
[42] Umemura H., “100 years of the Painlevé equation”, Selected Papers on Classical Analysis, Trans. Amer. Math. Soc. (2), 204, American Mathematical Society, Providence, RI, 2001, 81–110 | DOI | MR
[43] van der Put M., Saito M.-H., “Moduli spaces for linear differential equations and the Painlevé equations”, Ann. Inst. Fourier (Grenoble), 59 (2009), 2611–2667, arXiv: 0902.1702 | DOI | MR | Zbl