@article{SIGMA_2024_20_a17,
author = {Miranda C. N. Cheng and Ioana Coman and Davide Passaro and Gabriele Sgroi},
title = {Quantum {Modular} $\widehat Z^G${-Invariants}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a17/}
}
TY - JOUR AU - Miranda C. N. Cheng AU - Ioana Coman AU - Davide Passaro AU - Gabriele Sgroi TI - Quantum Modular $\widehat Z^G$-Invariants JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a17/ LA - en ID - SIGMA_2024_20_a17 ER -
Miranda C. N. Cheng; Ioana Coman; Davide Passaro; Gabriele Sgroi. Quantum Modular $\widehat Z^G$-Invariants. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a17/
[1] Alexandrov S., “Rank $N$ Vafa–Witten invariants, modularity and blow-up”, Adv. Theor. Math. Phys., 25 (2021), 275–308, arXiv: 2006.10074 | DOI | MR | Zbl
[2] Alexandrov S., “Vafa–Witten invariants from modular anomaly”, Commun. Number Theory Phys., 15 (2021), 149–219, arXiv: 2005.03680 | DOI | MR | Zbl
[3] Alexandrov S., Banerjee S., Manschot J., Pioline B., “Multiple D3-instantons and mock modular forms I”, Comm. Math. Phys., 353 (2017), 379–411, arXiv: 1605.05945 | DOI | MR | Zbl
[4] Alexandrov S., Banerjee S., Manschot J., Pioline B., “Indefinite theta series and generalized error functions”, Selecta Math. (N. S.), 24 (2018), 3927–3972, arXiv: 1606.05495 | DOI | MR | Zbl
[5] Alexandrov S., Banerjee S., Manschot J., Pioline B., “Multiple D3-instantons and mock modular forms II”, Comm. Math. Phys., 359 (2018), 297–346, arXiv: 1702.05497 | DOI | MR | Zbl
[6] Alexandrov S., Manschot J., Pioline B., “S-duality and refined BPS indices”, Comm. Math. Phys., 380 (2020), 755–810, arXiv: 1910.03098 | DOI | MR | Zbl
[7] Alexandrov S., Pioline B., “Black holes and higher depth mock modular forms”, Comm. Math. Phys., 374 (2020), 549–625, arXiv: 1808.08479 | DOI | MR | Zbl
[8] Alim M., Haghighat B., Hecht M., Klemm A., Rauch M., Wotschke T., “Wall-crossing holomorphic anomaly and mock modularity of multiple M5-branes”, Comm. Math. Phys., 339 (2015), 773–814, arXiv: 1012.1608 | DOI | MR | Zbl
[9] Benetti Genolini P., Cabo-Bizet A., Murthy S., “Supersymmetric phases of ${\rm AdS}_4/{\rm CFT}_3$”, J. High Energy Phys., 2023:6 (2023), 125, 71 pp., arXiv: 2301.00763 | DOI | MR
[10] Bringmann K., Folsom A., Ono K., Rolen L., Harmonic Maass forms and mock modular forms: theory and applications, Amer. Math. Soc. Colloq. Publ., 64, American Mathematical Society, Providence, RI, 2017 | DOI | MR | Zbl
[11] Bringmann K., Kaszian J., Milas A., “Higher depth quantum modular forms, multiple Eichler integrals, and $\mathfrak{sl}_3$ false theta functions”, Res. Math. Sci., 6 (2019), 20, 41 pp., arXiv: 1704.06891 | DOI | MR | Zbl
[12] Bringmann K., Kaszian J., Milas A., “Vector-valued higher depth quantum modular forms and higher Mordell integrals”, J. Math. Anal. Appl., 480 (2019), 123397, 22 pp., arXiv: 1803.06261 | DOI | MR | Zbl
[13] Bringmann K., Kaszian J., Milas A., Nazaroglu C., “Integral representations of rank two false theta functions and their modularity properties”, Res. Math. Sci., 8 (2021), 54, 31 pp., arXiv: 2101.02902 | DOI | MR | Zbl
[14] Bringmann K., Kaszian J., Milas A., Nazaroglu C., “Higher depth false modular forms”, Commun. Contemp. Math., 25 (2023), 2250043, 53 pp., arXiv: 2109.00394 | DOI | MR
[15] Bringmann K., Kaszián J., Rolen L., “Indefinite theta functions arising in Gromov–Witten theory of elliptic orbifolds”, Camb. J. Math., 6 (2018), 25–57, arXiv: 1608.08588 | DOI | MR | Zbl
[16] Bringmann K., Mahlburg K., Milas A., “Higher depth quantum modular forms and plumbed 3-manifolds”, Lett. Math. Phys., 110 (2020), 2675–2702, arXiv: 1906.10722 | DOI | MR | Zbl
[17] Bringmann K., Mahlburg K., Milas A., “Quantum modular forms and plumbing graphs of 3-manifolds”, J. Combin. Theory Ser. A, 170 (2020), 105145, 32 pp., arXiv: 1810.05612 | DOI | MR | Zbl
[18] Bringmann K., Nazaroglu C., “An exact formula for $\rm U(3)$ Vafa–Witten invariants on $\mathbb P^2$”, Trans. Amer. Math. Soc., 372 (2019), 6135–6159, arXiv: 1803.09270 | DOI | MR | Zbl
[19] Bringmann K., Nazaroglu C., “A framework for modular properties of false theta functions”, Res. Math. Sci., 6 (2019), 30, 23 pp., arXiv: 1904.05377 | DOI | MR | Zbl
[20] Bringmann K., Ono K., “The $f(q)$ mock theta function conjecture and partition ranks”, Invent. Math., 165 (2006), 243–266 | DOI | MR | Zbl
[21] Bruinier J.H., Funke J., “On two geometric theta lifts”, Duke Math. J., 125 (2004), 45–90, arXiv: math.NT/0212286 | DOI | MR | Zbl
[22] Cappelli A., Itzykson C., Zuber J.B., “The ${\rm A}$-${\rm D}$-${\rm E}$ classification of minimal and $A^{(1)}_1$ conformal invariant theories”, Comm. Math. Phys., 113 (1987), 1–26 | DOI | MR | Zbl
[23] Chauhan S., Ramadevi P., “$\hat Z$-invariant for ${\rm SO}(3)$ and ${\rm OSp}(1|2)$ groups”, Ann. Henri Poincaré, 24 (2023), 3347–3371, arXiv: 2209.00095 | DOI | MR
[24] Cheng M.C.N., Chun S., Feigin B., Ferrari F., Gukov S., Harrison S.M., Passaro D., 3-manifolds and VOA characters, arXiv: 2201.04640
[25] Cheng M.C.N., Chun S., Ferrari F., Gukov S., Harrison S.M., “3d modularity”, J. High Energy Phys., 2019:10 (2019), 010, 93 pp., arXiv: 1809.10148 | DOI | MR
[26] Cheng M.C.N., Duncan J.F.R., “Rademacher sums and Rademacher series”, Conformal Field Theory, Automorphic Forms and Related Topics, Contrib. Math. Comput. Sci., 8, Springer, Heidelberg, 2014, 143–182, arXiv: 1210.3066 | DOI | MR | Zbl
[27] Cheng M.C.N., Ferrari F., Sgroi G., “Three-manifold quantum invariants and mock theta functions”, Philos. Trans. Roy. Soc. A, 378 (2020), 20180439, 15 pp., arXiv: 1912.07997 | DOI | MR | Zbl
[28] Choi D., Lim S., Rhoades R.C., “Mock modular forms and quantum modular forms”, Proc. Amer. Math. Soc., 144 (2016), 2337–2349 | DOI | MR
[29] Chung H.-J., “BPS invariants for Seifert manifolds”, J. High Energy Phys., 2020:3 (2020), 113, 66 pp., arXiv: 1811.08863 | DOI | MR | Zbl
[30] Chung H.-J., “BPS invariants for 3-manifolds at rational level $K$”, J. High Energy Phys., 2021:2 (2021), 083, 22 pp., arXiv: 1906.12344 | DOI | MR
[31] Chung H.-J., “Resurgent analysis for some 3-manifold invariants”, J. High Energy Phys., 2021:5 (2021), 106, 39 pp., arXiv: 2008.02786 | DOI | MR | Zbl
[32] Chung H.-J., “BPS invariants for a knot in Seifert manifolds”, J. High Energy Phys., 2022:12 (2022), 122, 23 pp., arXiv: 2201.08351 | DOI | MR
[33] Dabholkar A., Gomes J., Murthy S., “Nonperturbative black hole entropy and Kloosterman sums”, J. High Energy Phys., 2015:3 (2015), 074, 35 pp., arXiv: 1404.0033 | DOI | MR
[34] Dabholkar A., Putrov P., “Three avatars of mock modularity”, Internat. J. Modern Phys. A, 36 (2021), 2130020, 37 pp., arXiv: 2110.09790 | DOI | MR
[35] Dabholkar A., Putrov P., Witten E., “Duality and mock modularity”, SciPost Phys., 9 (2020), 072, 45 pp., arXiv: 2004.14387 | DOI | MR
[36] de Boer J., Cheng M.C.N., Dijkgraaf R., Manschot J., Verlinde E., “A Farey tail for attractor black holes”, J. High Energy Phys., 2006:11 (2006), 024, 28 pp., arXiv: hep-th/0608059 | DOI | MR
[37] Denef F., Moore G.W., “Split states, entropy enigmas, holes and halos”, J. High Energy Phys., 2011:11 (2011), 129, 152 pp., arXiv: hep-th/0702146 | DOI | MR | Zbl
[38] Dijkgraaf R., Maldacena J., Moore G., Verlinde E., A black hole farey tail, arXiv: hep-th/0005003
[39] Eichler M., “Eine Verallgemeinerung der Abelschen Integrale”, Math. Z., 67 (1957), 267–298 | DOI | MR | Zbl
[40] Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Stošić M., Sułkowski P., “Branches, quivers, and ideals for knot complements”, J. Geom. Phys., 177 (2022), 104520, 75 pp., arXiv: 2110.13768 | DOI | MR | Zbl
[41] Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Sułkowski P., “$\hat{Z}$ at large $N$: from curve counts to quantum modularity”, Comm. Math. Phys., 396 (2022), 143–186, arXiv: 2005.13349 | DOI | MR | Zbl
[42] Ellegaard Andersen J., Elbæk Misteg{å}rd W., Resurgence analysis of quantum invariants of {S}eifert fibered homology sphere, J. Lond. Math. Soc., 105 (2022), 709–764, arXiv: 1811.05376 | DOI | MR
[43] Feigin B.L., Tipunin I.Yu., Logarithmic CFTs connected with simple Lie algebras, arXiv: 1002.5047
[44] Ferrari F., Putrov P., “Supergroups, $q$-series and 3-manifolds”, Ann. Henri Poincaré (to appear) , arXiv: 2009.14196 | DOI
[45] Ferrari F., Reys V., “Mixed Rademacher and BPS black holes”, J. High Energy Phys., 2017:7 (2017), 094, 36 pp., arXiv: 1702.02755 | DOI | MR
[46] Gukov S., Manolescu C., “A two-variable series for knot complements”, Quantum Topol., 12 (2021), 1–109, arXiv: 1904.06057 | DOI | MR | Zbl
[47] Gukov S., Marino M., Putrov P., Resurgence in complex Chern–Simons theory, arXiv: 1605.07615
[48] Gukov S., Park S., Putrov P., “Cobordism invariants from BPS $q$-series”, Ann. Henri Poincaré, 22 (2021), 4173–4203, arXiv: 2009.11874 | DOI | MR | Zbl
[49] Gukov S., Pei D., Putrov P., Vafa C., “BPS spectra and 3-manifold invariants”, J. Knot Theory Ramifications, 29 (2020), 2040003, 85 pp., arXiv: 1701.06567 | DOI | MR | Zbl
[50] Gukov S., Putrov P., Vafa C., “Fivebranes and 3-manifold homology”, J. High Energy Phys., 2017:7 (2017), 071, 80 pp., arXiv: 1602.05302 | DOI | MR
[51] Gupta R.K., Murthy S., Nazaroglu C., “Squashed toric manifolds and higher depth mock modular forms”, J. High Energy Phys., 2019:2 (2019), 064, 44 pp., arXiv: 1808.00012 | DOI | MR
[52] Hikami K., “Mock (false) theta functions as quantum invariants”, Regul. Chaotic Dyn., 10 (2005), 509–530, arXiv: math-ph/0506073 | DOI | MR | Zbl
[53] Hikami K., “On the quantum invariant for the Brieskorn homology spheres”, Internat. J. Math., 16 (2005), 661–685, arXiv: math-ph/0405028 | DOI | MR | Zbl
[54] Hikami K., “Quantum invariant, modular form, and lattice points”, Int. Math. Res. Not., 2005 (2005), 121–154, arXiv: math-ph/0409016 | DOI | MR | Zbl
[55] Lawrence R., Zagier D., “Modular forms and quantum invariants of $3$-manifolds”, Asian J. Math., 3 (1999), 93–107 | DOI | MR | Zbl
[56] Maldacena J., Strominger A., “${\rm AdS}_3$ black holes and a stringy exclusion principle”, J. High Energy Phys., 1998:12 (1998), 005, 24 pp., arXiv: hep-th/9804085 | DOI | MR
[57] Males J., Mono A., Rolen L., “Higher depth mock theta functions and $q$-hypergeometric series”, Forum Math., 33 (2021), 857–866, arXiv: 2101.04991 | DOI | MR | Zbl
[58] Manschot J., “Vafa–Witten theory and iterated integrals of modular forms”, Comm. Math. Phys., 371 (2019), 787–831, arXiv: 1709.10098 | DOI | MR | Zbl
[59] Matsusaka T., Terashima Y., Modular transformations of homological blocks for Seifert fibered homology $3$-spheres, arXiv: 2112.06210
[60] Minahan J.A., Nemeschansky D., Vafa C., Warner N.P., “${\rm E}$-strings and $N=4$ topological Yang–Mills theories”, Nuclear Phys. B, 527 (1998), 581–623, arXiv: hep-th/9802168 | DOI | MR | Zbl
[61] Murakami Y., A proof of a conjecture of Gukov–Pei–Putrov–Vafa, arXiv: 2302.13526
[62] Murthy S., Pioline B., “A Farey tale for ${\mathcal N}=4$ dyons”, J. High Energy Phys., 2009:9 (2009), 022, 27 pp., arXiv: 0904.4253 | DOI | MR
[63] Niebur D., “Construction of automorphic forms and integrals”, Trans. Amer. Math. Soc., 191 (1974), 373–385 | DOI | MR | Zbl
[64] Park S., “Higher rank $\hat{Z}$ and $F_K$”, SIGMA, 16 (2020), 044, 17 pp., arXiv: 1909.13002 | DOI | MR | Zbl
[65] Park S., Inverted state sums, inverted Habiro series, and indefinite theta functions, arXiv: 2106.03942
[66] Shimura G., “Sur les intégrales attachées aux formes automorphes”, J. Math. Soc. Japan, 11 (1959), 291–311 | DOI | MR | Zbl
[67] Skoruppa N.-P., Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen Gewichts, Bonn. Math. Schr., 159, Universität Bonn, Bonn, 1985 | MR
[68] Skoruppa N.-P., “Jacobi forms of critical weight and Weil representations”, Modular Forms on Schiermonnikoog, Cambridge University Press, Cambridge, 2008, 239–266, arXiv: 0707.0718 | DOI | MR | Zbl
[69] Zagier D., “Valeurs des fonctions zêta des corps quadratiques réels aux entiers négatifs”, Astérisque, 41–42, 1977, 135–151 | MR | Zbl
[70] Zagier D., “Ramanujan's mock theta functions and their applications (after Zwegers and Ono–Bringmann)”, Astérisque, 986, 2009, 143–164 | MR | Zbl
[71] Zagier D., “Quantum modular forms”, Quanta of Maths, Clay Math. Proc., 11, American Mathematical Society, Providence, RI, 2010, 659–675 | MR | Zbl
[72] Zagier D., Holomorphic quantum modular forms, Talk at Hausdorff Center for Mathematics, 2020 https://www.youtube.com/watch?v=2Rj_xh3UKrU
[73] Zwegers S., Mock theta functions, arXiv: 0807.4834